Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plant Cell Physiol ; 64(1): 117-123, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36264192

RESUMEN

Apomixis, defined as the transfer of maternal germplasm to offspring without fertilization, enables the fixation of F1-useful traits, providing advantages in crop breeding. However, most apomictic plants require pollination to produce the endosperm. The endosperm is essential for embryogenesis, and its development is suppressed until fertilization. We show that the expression of a chimeric repressor of the Elongation of Siliques without Pollination 3 (ESP3) gene (Pro35S:ESP3-SRDX) induces ovule enlargement without fertilization in Arabidopsis thaliana. The ESP3 gene encodes a protein similar to the flowering Wageningen homeodomain transcription factor containing a StAR-related lipid transfer domain. However, ESP3 lacks the homeobox-encoding region. Genes related to the cell cycle and sugar metabolism were upregulated in unfertilized Pro35S:ESP3-SRDX ovules similar to those in fertilized seeds, while those related to autophagy were downregulated similar to those in fertilized seeds. Unfertilized Pro35S:ESP3-SRDX ovules partially nourished embryos when only the egg was fertilized, accumulating hexoses without central cell proliferation. ESP3 may regulate nutrient flow during seed development, and ESP3-SRDX could be a useful tool for complete apomixis that does not require pseudo-fertilization.


Asunto(s)
Arabidopsis , Polinización , Semillas/metabolismo , Endospermo/genética , Reproducción , Arabidopsis/genética , Desarrollo Embrionario , Óvulo Vegetal/genética
2.
Plant J ; 103(1): 197-211, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32072682

RESUMEN

Metabolites, phytohormones, and genes involved in dehydration responses/tolerance have been predicted in several plants. However, metabolite/phytohormone-gene regulatory networks in soybean organs under dehydration conditions remain unclear. Here, we analyzed the organ specificity of metabolites, phytohormones, and gene transcripts and revealed the characteristics of their regulatory networks in dehydration-treated soybeans. Our metabolite/phytohormone analysis revealed the accumulation of raffinose, trehalose, and cis-zeatin (cZ) specifically in dehydration-treated roots. In dehydration-treated soybeans, raffinose, and trehalose might have additional roles not directly involved in protecting the photosynthetic apparatus; cZ might contribute to root elongation for water uptake from the moisture region in soil. Our integration analysis of metabolites-genes indicated that galactinol, raffinose, and trehalose levels were correlated with transcript levels for key enzymes (galactinol synthase, raffinose synthase, trehalose 6-phosphate synthase, trehalose 6-phosphate phosphatase) at the level of individual plants but not at the organ level under dehydration. Genes encoding these key enzymes were expressed in mainly the aerial parts of dehydration-treated soybeans. These results suggested that raffinose and trehalose are transported from aerial plant parts to the roots in dehydration-treated soybeans. Our integration analysis of phytohormones-genes indicated that cZ and abscisic acid (ABA) levels were correlated with transcript levels for key enzymes (cytokinin nucleoside 5'-monophosphate phosphoribohydrolase, cytokinin oxidases/dehydrogenases, 9-cis-epoxycarotenoid dioxygenase) at the level of individual plants but not at the organ level under dehydration conditions. Therefore, processes such as ABA and cZ transport, among others, are important for the organ specificity of ABA and cZ production under dehydration conditions.


Asunto(s)
Redes Reguladoras de Genes , Glycine max/genética , Reguladores del Crecimiento de las Plantas/fisiología , Ácido Abscísico/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas , Metabolómica , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Rafinosa/metabolismo , Glycine max/metabolismo , Glycine max/fisiología , Transcriptoma , Trehalosa/metabolismo , Zeatina/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(47): E11178-E11187, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397148

RESUMEN

The plant hormone abscisic acid (ABA) is accumulated after drought stress and plays critical roles in the responses to drought stress in plants, such as gene regulation, stomatal closure, seed maturation, and dormancy. Although previous reports revealed detailed molecular roles of ABA in stress responses, the factors that contribute to the drought-stress responses-in particular, regulation of ABA accumulation-remain unclear. The enzyme NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) is essential for ABA biosynthesis during drought stress, and the NCED3 gene is highly induced by drought stress. In the present study, we isolated NGATHAs (NGAs) as candidate transcriptional regulators of NCED3 through a screen of a plant library harboring the transcription factors fused to a chimeric repressor domain, SRDX. The NGA proteins were directly bound to a cis-element NGA-binding element (NBE) in the 5' untranslated region (5' UTR) of the NCED3 promoter and were suggested to be transcriptional activators of NCED3 Among the single-knockout mutants of four NGA family genes, we found that the NGATHA1 (NGA1) knockout mutant was drought-stress-sensitive with a decreased expression level of NCED3 during dehydration stress. These results suggested that NGA1 essentially functions as a transcriptional activator of NCED3 among the NGA family proteins. Moreover, the NGA1 protein was degraded under nonstressed conditions, and dehydration stress enhanced the accumulation of NGA1 proteins, even in ABA-deficient mutant plants, indicating that there should be ABA-independent posttranslational regulations. These findings emphasize the regulatory mechanisms of ABA biosynthesis during early drought stress.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dioxigenasas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Regiones no Traducidas 5'/genética , Ácido Abscísico/genética , Proteínas de Arabidopsis/genética , Dioxigenasas/genética , Sequías , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética , Activación Transcripcional/genética
4.
Plant Cell ; 29(4): 760-774, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28351986

RESUMEN

In plants, cold temperatures trigger stress responses and long-term responses that result in cold tolerance. In Arabidopsis thaliana, three dehydration-responsive element (DRE) binding protein 1/C-repeat binding factors (DREB1/CBFs) act as master switches in cold-responsive gene expression. Induction of DREB1 genes triggers the cold stress-inducible transcriptional cascade, followed by the induction of numerous genes that function in the cold stress response and cold tolerance. Many regulatory factors involved in DREB1 induction have been identified, but how these factors orchestrate the cold stress-specific expression of DREB1s has not yet been clarified. Here, we revealed that plants recognize cold stress as two different signals, rapid and gradual temperature decreases, and induce expression of the DREB1 genes. CALMODULIN BINDING TRANSCRIPTION ACTIVATOR3 (CAMTA3) and CAMTA5 respond to a rapid decrease in temperature and induce the expression of DREB1s, but these proteins do not respond to a gradual decrease in temperature. Moreover, they function during the day and night, in contrast to some key circadian components, including CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL, which regulate cold-responsive DREB1 expression as transcriptional activators only during the day. Thus, plants efficiently control the acquisition of freezing tolerance using two different signaling pathways in response to a gradual temperature decrease during seasonal changes and a sudden temperature drop during the night.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Genet Mol Biol ; 43(3): e20190292, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32511664

RESUMEN

Water deficit is an important climatic problem that can impair agriculture yield and economy. Genetically modified soybean plants containing the AtNCED3 gene were obtained aiming drought-tolerance improvement. The NCED3 gene encodes a 9-cis-epoxycarotenoid dioxygenase (NCED, EC 1.13.11.51), an important enzyme in abscisic acid biosynthesis. ABA activates the expression of drought-responsive genes, in water-deficit conditions, targeting defense mechanisms and enabling plants to survive under low water availability. Results from greenhouse experiments showed that the transgene AtNCED3 and the endogenous genes GmAREB1, GmPP2C, GmSnRK2 and GmAAO3 presented higher expression under water deficit (WD) in the event 2Ha11 than in WT-plants. No significant correlation was observed between the plant materials and WD conditions for growth parameters; however, gas exchange measurements decreased in the GM event, which also showed 80% higher intrinsic water use when compared to WT plants. In crop season 2015/16, event 2Ha11 showed higher total number of pods, higher number of pods with seeds and yield than WT plants. ABA concentration was also higher in GM plants under WD. These results obtained in field screenings suggest that AtNCED3 soybean plants might outperform under drought, reducing economic and yield losses, thus being a good candidate line to be incorporated in the soybean-breeding program to develop drought-tolerant cultivars.

6.
Plant J ; 84(6): 1114-23, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26518251

RESUMEN

Leaf senescence is the terminal phenotype of plant leaf development, and ethylene is a major plant hormone inducing leaf senescence. Recent studies have shown that abscisic acid (ABA) also induces leaf senescence. However, the detailed mechanisms of ABA-induced leaf senescence remain unclear. We focused on the A subfamily of stress-responsive NAC (SNAC-A) transcription factors, the expression of which is induced by abiotic stresses, particularly ABA. Gene expression analysis revealed that seven SNAC-A genes including ANAC055, ANAC019, ANAC072/RD26, ANAC002/ATAF1, ANAC081/ATAF2, ANAC102 and ANAC032 were induced by long-term treatment with ABA and/or during age-dependent senescence. The SNAC-A septuple mutant clearly showed retardation of ABA-inducible leaf senescence. Microarray analysis indicated that SNAC-As induce ABA- and senescence-inducible genes. In addition, comparison of the expression profiles of the downstream genes of SNAC-As and ABA-responsive element (ABRE)-binding protein (AREB)/ABRE-binding factor (ABF) (AREB/ABFs) indicates that SNAC-As induce a different set of ABA-inducible genes from those mediated by AREB/ABFs. These results suggest that SNAC-As play crucial roles in ABA-induced leaf senescence signaling. We also discuss the function of SNAC-As in the transcriptional change of leaf senescence as well as in ABA response under abiotic stress conditions.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hojas de la Planta/efectos de los fármacos , ARN de Planta/genética , ARN de Planta/metabolismo , Factores de Transcripción/genética
8.
Biochim Biophys Acta ; 1819(2): 97-103, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22037288

RESUMEN

Abiotic stresses such as drought and high salinity adversely affect the growth and productivity of plants, including crops. The development of stress-tolerant crops will be greatly advantageous for modern agriculture in areas that are prone to such stresses. In recent years, several advances have been made towards identifying potential stress related genes which are capable of increasing the tolerance of plants to abiotic stress. NAC proteins are plant-specific transcription factors and more than 100 NAC genes have been identified in Arabidopsis and rice to date. Phylogenetic analyses indicate that the six major groups were already established at least in an ancient moss lineage. NAC transcription factors have a variety of important functions not only in plant development but also in abiotic stress responses. Stress-inducible NAC genes have been shown to be involved in abiotic stress tolerance. Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance. These studies indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. Although these transcription factors can bind to the same core NAC recognition sequence, recent studies have demonstrated that the effects of NAC factors for growth are different. Moreover, the NAC proteins are capable of functioning as homo- or hetero-dimer forms. Thus, SNAC factors can be useful for improving stress tolerance in transgenic plants, although the mechanism for mediating the stress tolerance of these homologous factors is complex in plants. Recent studies also suggest that crosstalk may exist between stress responses and plant growth. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Plantas/clasificación , Plantas/genética , Estrés Fisiológico , Factores de Transcripción/genética
9.
FEBS Lett ; 597(3): 407-417, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36645411

RESUMEN

Endosperm-embryo development in flowering plants is regulated coordinately by signal exchange during seed development. However, such a reciprocal control mechanism has not been clearly identified. In this study, we identified an endosperm-specific gene, LBD35, expressed in an embryonic development-dependent manner, by a comparative transcriptome and cytological analyses of double-fertilized and single-fertilized seeds prepared by using the kokopelli mutant, which frequently induces single fertilization events. Transcriptome analysis using LBD35 as a marker of the central cell fertilization event identified that 141 genes, including 31 genes for small cysteine-rich peptides, are expressed in a double fertilization-dependent manner. Our results reveal possible embryonic signals that regulate endosperm gene expression and provide a practicable method to identify genes involved in the communication during endosperm-embryo development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Endospermo/genética , Endospermo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Semillas/genética , Semillas/metabolismo , Desarrollo Embrionario , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las Plantas
10.
Plant Biotechnol (Tokyo) ; 39(2): 185-189, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35937534

RESUMEN

The brassinosteroid (BR) phytohormone is an important regulator of plant growth. To identify novel transcription factors that regulate BR responses, we screened chimeric repressor gene silencing technology (CRES-T) plants, in which transcription factors were converted into chimeric repressors by the fusion of SRDX plant-specific repression domain, with brassinazole (Brz), an inhibitor of BR biosynthesis. We identified that a line that expressed the chimeric repressor for zinc finger homeobox transcription factor, BRASSINOSTEORID-RELATED-HOMEOBOX-2 (BHB2-sx), exhibited Brz-hypersensitive phenotype with shorter hypocotyl under dark, dwarf and round and dark green leaves similar to BR-deficient phenotype. Similar to BHB2-sx plants, bhb2 knockout mutant also exhibited Brz hypersensitive phenotype. In contrast, ectopic expression of BHB2 (BHB2-ox) showed hypocotyl elongation phenotype (BR excessive), showing decrease to Brz sensitivity. The expression of the DWF4 and CPD BR biosynthesis genes was repressed in BHB2-sx plants, whereas it was enhanced in BHB2-ox plants. The BR deficient-like phenotype of BHB2-sx plants was partially restored by treatment with brassinolide (BL), indicating that the BR deficient phenotype of BHB2-sx plant may be due to suppression of BR biosynthesis. Our results indicate that BHB2 is a positive regulator of BR response may be due to the promotion of BR biosynthesis genes.

11.
Plant Biotechnol (Tokyo) ; 39(2): 209-214, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35937537

RESUMEN

Brassinosteroid (BR) is a phytohormone that acts as important regulator of plant growth. To identify novel transcription factors that may be involved in unknown mechanisms of BR signaling, we screened the chimeric repressor expressing plants (CRES-T), in which transcription factors were converted into chimeric repressors by the fusion of SRDX plant-specific repression domain, to identify those that affect the expression of BR inducible genes. Here, we identified a homeobox-leucine zipper type transcription factor, BRASSINOSTEROID-RELATED-HOMEOBOX 3 (BHB3), of which a chimeric repressor expressing plants (BHB3-sx) significantly downregulated the expression of BAS1 and SAUR-AC1 that are BR inducible genes. Interestingly, ectopic expression of BHB3 (BHB3-ox) also repressed the BR inducible genes and shorten hypocotyl that would be similar to a BR-deficient phenotype. Interestingly, both BHB3-sx and BHB3-ox showed pale green phenotype, in which the expression of genes related photosynthesis and chlorophyll contents were significantly decreased. We found that BHB3 contains three motifs similar to the conserved EAR-repression domain, suggesting that BHB3 may act as a transcriptional repressor. These results indicate that BHB3 might play an important role not only to the BR signaling but also the regulation of greenings.

12.
Plant Cell Physiol ; 51(5): 842-7, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20375108

RESUMEN

The subclass III group of SNF1-related protein kinase 2 (SnRK2) members is known to play an important role in ABA and osmotic stress signaling in Arabidopsis; however, the roles of other subclasses remain elusive. Here, we established a double mutant of SRK2C/SnR2.8 and SRK2F/SnRK2.7 to investigate the functions of subclass II SnRK2s. Microarray analysis suggested that subclass II SnRK2s regulate some drought-responsive genes involving ABA-responsive element binding transcription factors (AREB/ABF) and their targets, and quantitative reverse transcription- PCR confirmed that those genes were down-regulated significantly in srk2cf. This study indicates that subclass II SnRK2s also play important roles in drought stress signaling in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Sequías , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
13.
Mol Genet Genomics ; 284(3): 173-83, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20632034

RESUMEN

The transcription factor OsNAC5 in rice is a member of the plant-specific NAC family that regulates stress responses. Expression of OsNAC5 is induced by abiotic stresses such as drought, cold, high salinity, abscisic acid and methyl jasmonic acid. Transactivation assays using rice protoplasts demonstrated that OsNAC5 is a transcriptional activator, and subcellular localization studies using OsNAC5-GFP fusion proteins showed that it is localized to the nucleus. Pull-down assays revealed that OsNAC5 interacts with OsNAC5, OsNAC6 and SNAC1. To analyze the function of OsNAC5 in rice plants, we generated transgenic plants that overexpressed OsNAC5. The growth of these plants was similar to that of control plants, whereas the growth of OsNAC6-overexpressing transgenic plants was retarded. OsNAC5-overexpressing transgenic plants also had improved tolerance to high salinity compared to control plants. By microarray analysis, many stress-inducible genes, including the "late embryogenesis abundant" gene OsLEA3, were upregulated in rice plants that overexpressed OsNAC5. By gel mobility shift assay, OsNAC5 and OsNAC6 were shown to bind to the OsLEA3 promoter. Collectively, our results indicate that the stress-responsive proteins OsNAC5 and OsNAC6 are transcriptional activators that enhance stress tolerance by upregulating the expression of stress-inducible rice genes such as OsLEA3, although the effects of these proteins on growth are different. Furthermore, because OsNAC5 overexpression did not retard growth, OsNAC5 may be a useful gene that can improve the stress tolerance of rice without affecting its growth.


Asunto(s)
Perfilación de la Expresión Génica , Oryza/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Ácido Abscísico/farmacología , Secuencia de Bases , Sitios de Unión/genética , Núcleo Celular/metabolismo , Frío , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Plantas Tolerantes a la Sal/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Cloruro de Sodio/farmacología , Factores de Transcripción/metabolismo , Agua/farmacología
14.
Amino Acids ; 37(2): 231-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18597039

RESUMEN

Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Oryza , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta , Proteínas de Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica , Hierro/metabolismo , Análisis por Micromatrices , Datos de Secuencia Molecular , Oryza/anatomía & histología , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética
15.
Phytochemistry ; 69(3): 637-46, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18022655

RESUMEN

To identify the effects of auxin on rice root formation, proteins induced by exogenous addition of auxin to rice seedlings were analyzed by a proteomic approach. Root formation by rice seedlings was promoted by 0.45microM 2,4-dichlorophenoxyacetic acid (2,4-D) and repressed by 60microM p-chlorophenoxyisobutyric acid (PCIB). Proteins extracted from the basal part of leaf sheaths of rice seedlings treated with 2,4-D or PCIB for 48h were labeled with Cy3 and Cy5, and separated by two-dimensional polyacrylamide gel electrophoresis. Out of nine proteins up-regulated by 2,4-D and down-regulated by PCIB, five proteins showing significant difference in abundance were used for expression analysis at the transcript abundance level. Transcript abundance of the mitochondrial complex I subunit slightly increased with 2,4-D treatment and were repressed by PCIB. The transcript abundance of EF-1beta', myosin heavy chain and mitochondrial [Mn]SOD increased with 2,4-D treatment but did not decrease with PCIB. The transcript abundance of aldehyde dehydrogenase was not effected by 2,4-D or PCIB. These results indicate that mitochondrial complex I subunit is part of the downstream signal cascade of PCIB, whereas myosin heavy chain, mitochondrial [Mn]SOD and EF-1beta' are involved in the 2,4-D signal cascade but are probably upstream of PCIB.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Ácidos Indolacéticos/farmacología , Oryza/química , Hojas de la Planta/química , Proteínas de Plantas/análisis , Raíces de Plantas/efectos de los fármacos , Ácido 2,4-Diclorofenoxiacético/farmacología , Ácido Clofíbrico/farmacología , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Miosinas/efectos de los fármacos , Miosinas/genética , Oryza/efectos de los fármacos , Oryza/metabolismo , Factor 1 de Elongación Peptídica/efectos de los fármacos , Factor 1 de Elongación Peptídica/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteómica , Semillas/genética , Semillas/metabolismo , Sensibilidad y Especificidad , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
17.
DNA Res ; 20(4): 315-24, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23604098

RESUMEN

Plants respond to dehydration stress and tolerate water-deficit status through complex physiological and cellular processes. Many genes are induced by water deficit. Abscisic acid (ABA) plays important roles in tolerance to dehydration stress by inducing many stress genes. ABA is synthesized de novo in response to dehydration. Most of the genes involved in ABA biosynthesis have been identified, and they are expressed mainly in leaf vascular tissues. Of the products of such genes, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis. One of the five NCED genes in Arabidopsis, AtNCED3, is significantly induced by dehydration. To understand the regulatory mechanism of the early stages of the dehydration stress response, it is important to analyse the transcriptional regulatory systems of AtNCED3. In the present study, we found that an overlapping G-box recognition sequence (5'-CACGTG-3') at -2248 bp from the transcriptional start site of AtNCED3 is an important cis-acting element in the induction of the dehydration response. We discuss the possible transcriptional regulatory system of dehydration-responsive AtNCED3 expression, and how this may control the level of ABA under water-deficit conditions.


Asunto(s)
Arabidopsis/genética , Dioxigenasas/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Agua/metabolismo , Ácido Abscísico/biosíntesis , Ácido Abscísico/genética , Arabidopsis/metabolismo , Secuencia de Bases , Deshidratación , Dioxigenasas/metabolismo , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Transcripción Genética
18.
DNA Res ; 19(1): 37-49, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22184637

RESUMEN

The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (4(6) = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species.


Asunto(s)
Arabidopsis/genética , Glycine max/genética , Oryza/genética , Regiones Promotoras Genéticas , Transcripción Genética , Ácido Abscísico/análisis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Composición de Base , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Análisis por Conglomerados , Frío , Secuencia Conservada , Deshidratación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Motivos de Nucleótidos , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo , Factores de Transcripción/genética
19.
Mol Genet Genomics ; 279(4): 359-70, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18210155

RESUMEN

Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.


Asunto(s)
Giberelinas/farmacología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Sondas de ADN/genética , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Datos de Secuencia Molecular , Mutación , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
J Proteome Res ; 4(5): 1592-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16212411

RESUMEN

Phosphoproteins in rice were detected by in vitro protein phosphorylation followed by two-dimensional polyacrylamide gel electrophoresis. Forty-four phosphoproteins were detected on a 2D-gel after in vitro protein phosphorylation of the crude extract from rice leaf sheath. Among the phosphoproteins detected, 42 were identified through analysis by Q-TOF MS/MS and/or MALDI-TOF MS. The largest percentage of the identified phosphoproteins are involved in signaling (30%), while 18% are involved in metabolism. When rice seedlings were treated with various hormones and stresses, it was observed that the phosphorylation of 13 proteins was enhanced differentially by different hormone and stress treatments. Furthermore, when the hormone/stress regulated phosphoproteins are compared in rice leaf sheath, leaf blade and root, only cytoplasmic malate dehydrogenase was found to be phosphorylated in all the tissues. Results suggest that in the phosphorylation cascade of rice, glycolytic metabolism processes and Ca(2+)-signaling seem to be important targets in response to hormones and stresses. Furthermore, the direct visualization of phosphoproteins by (32)P-labeling and their mass spectrometric identification provides an accurate and reliable method of analyzing the rice phosphoproteome.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/química , Proteínas de Plantas/química , Proteoma , Calcio/metabolismo , Citoplasma/metabolismo , Electroforesis en Gel Bidimensional , Hormonas/metabolismo , Focalización Isoeléctrica , Malato Deshidrogenasa/química , Espectrometría de Masas , Fosfoproteínas/química , Fosforilación , Proteómica/métodos , Transducción de Señal , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA