Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38405985

RESUMEN

A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.

2.
Mol Cancer Ther ; 21(11): 1663-1673, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36031342

RESUMEN

Risk of locoregional recurrence after sarcoma resection is high, increasing both morbidity and mortality. Intraoperative implantation of paclitaxel (PTX)-eluting polymer films locally delivers sustained, supratherapeutic PTX concentrations to the tumor bed that are not clinically feasible with systemic therapy, thereby reducing recurrence and improving survival in a murine model of recurrent sarcoma. However, the biology underlying increased efficacy of PTX-eluting films is unknown and provides the impetus for this work. In vitro PTX efficacy is time and dose dependent with prolonged exposure significantly decreasing PTX IC50 values for human chondrosarcoma (CS-1) cells (153.9 nmol/L at 4 hours vs. 14.2 nmol/L at 30 hours, P = 0.0001). High-dose PTX significantly inhibits proliferation with in vivo PTX films delivering a dose >130 µmol/L directly to the tumor thereby irreversibly arresting cell cycle and inducing apoptosis in CS-1 as well as patient-derived liposarcoma (LP6) and leiomyosarcoma (LMS20). Supratherapeutic PTX upregulates the expression of p21 in G2-M arrested cells, and irreversibly induces apoptosis followed by cell death, within 4 hours of exposure. Microarray analyses corroborate the finding of poor DNA integrity commonly observed as a final step of apoptosis in CS-1 cells and tumor. Unlike low PTX concentrations at the tumor bed during systemic delivery, supratherapeutic concentrations achieved with PTX-eluting films markedly decrease sarcoma lethality in vivo and offer an alternative paradigm to prevent recurrence.


Asunto(s)
Antineoplásicos Fitogénicos , Sarcoma , Humanos , Ratones , Animales , Paclitaxel , Antineoplásicos Fitogénicos/farmacología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Apoptosis , Sarcoma/tratamiento farmacológico , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA