Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36500611

RESUMEN

Four new heterometallic complexes combining [MII(H2dapsc)]2+ cations with the chelating H2dapsc {2,6-diacetylpyridine-bis(semicarbazone)} Schiff base ligand and [Cr(CN)6]3- anion were synthesized: {[MII(H2dapsc)]CrIII(CN)6K(H2O)2.5(EtOH)0.5}n·1.2n(H2O), M = Mn (1) and Co (2), {[Mn(H2dapsc)]2Cr(CN)6(H2O)2}Cl·H2O (3) and {[Co(H2dapsc)]2Cr(CN)6(H2O)2}Cl·2EtOH·3H2O (4). In all the compounds, M(II) centers are seven-coordinated by N3O2 atoms of H2dapsc in the equatorial plane and N or O atoms of two apical -CN/water ligands. Crystals 1 and 2 are isostructural and contain infinite negatively charged chains of alternating [MII(H2dapsc)]2+ and [CrIII(CN)6]3- units linked by CN-bridges. Compounds 3 and 4 consist of centrosymmetric positively charged trimers in which two [MII(H2dapsc)]2+ cations are bound through one [CrIII(CN)6]3- anion. All structures are regulated by π-stacking of coplanar H2dapsc moieties as well as by an extensive net of hydrogen bonding. Adjacent chains in 1 and 2 interact also by coordination bonds via a pair of K+ ions. The compounds containing MnII (1, 3) and CoII (2, 4) show a significant difference in magnetic properties. The ac magnetic measurements revealed that complexes 1 and 3 behave as a spin glass and a field-induced single-molecule magnet, respectively, while 2 and 4 do not exhibit slow magnetic relaxation in zero and non-zero dc fields. The relationship between magnetic properties and non-covalent interactions in the structures 1-4 was traced.


Asunto(s)
Magnetismo , Bases de Schiff , Cristalografía por Rayos X , Ligandos , Bases de Schiff/química , Fenómenos Magnéticos
2.
Sensors (Basel) ; 20(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941023

RESUMEN

Magnetic sensors have great potential for biomedical applications, particularly, detection of magnetically-labeled biomolecules and cells. On the basis of the advantage of the planar Hall effect sensor, which consists of improved thermal stability as compared with other magnetic sensors, we have designed a portable biosensor platform that can detect magnetic labels without applying any external magnetic field. The trilayer sensor, with a composition of Ta (5 nm)/NiFe (10 nm)/Cu (x = 0 nm~1.2 nm)/IrMn (10 nm)/Ta (5 nm), was deposited on a silicon wafer using photolithography and a sputtering system, where the optimized sensor sensitivity was 6 µV/(Oe∙mA). The detection of the magnetic label was done by comparing the signals obtained in first harmonic AC mode (1f mode) using an external magnetic field and in the second harmonic AC mode (2f mode) with a self-field generated by current passing through the sensor. In addition, a technique for the ß-amyloid biomarker-based antibody-antigen sandwich model was demonstrated for the detection of a series of concentrations of magnetic labels using the self-field mode method, where the signal-to-noise ratio (SNR) was high. The generated self-field was enough to detect an immobilized magnetic tag without an additional external magnetic field. Hence, it could be possible to reduce the device size to use the point-of-care testing using a portable circuit system.


Asunto(s)
Péptidos beta-Amiloides/análisis , Biomarcadores/análisis , Técnicas Biosensibles , Campos Magnéticos , Humanos , Procesamiento de Señales Asistido por Computador
3.
Chemistry ; 25(64): 14583-14597, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31361924

RESUMEN

Reactions of [Mn(H2 dapsc)Cl2 ]⋅H2 O (dapsc=2,6- diacetylpyridine bis(semicarbazone)) with K3 [Fe(CN)6 ] and (PPh4 )3 [Fe(CN)6 ] lead to the formation of the chain polymeric complex {[Mn(H2 dapsc)][Fe(CN)6 ][K(H2 O)3.5 ]}n ⋅1.5n H2 O (1) and the discrete pentanuclear complex {[Mn(H2 dapsc)]3 [Fe(CN)6 ]2 (H2 O)2 }⋅4 CH3 OH⋅3.4 H2 O (2), respectively. In the crystal structure of 1 the high-spin [MnII (H2 dapsc)]2+ cations and low-spin hexacyanoferrate(III) anions are assembled into alternating heterometallic cyano-bridged chains. The K+ ions are located between the chains and are coordinated by oxygen atoms of the H2 dapsc ligand and water molecules. The magnetic structure of 1 is built from ferrimagnetic chains, which are antiferromagnetically coupled. The complex exhibits metamagnetism and frequency-dependent ac magnetic susceptibility, indicating single-chain magnetic behavior with a Mydosh-parameter φ=0.12 and an effective energy barrier (Ueff /kB ) of 36.0 K with τ0 =2.34×10-11  s for the spin relaxation. Detailed theoretical analysis showed highly anisotropic intra-chain spin coupling between [FeIII (CN)6 ]3- and [MnII (H2 dapsc)]2+ units resulting from orbital degeneracy and unquenched orbital momentum of [FeIII (CN)6 ]3- complexes. The origin of the metamagnetic transition is discussed in terms of strong magnetic anisotropy and weak AF interchain spin coupling.

4.
Inorg Chem ; 56(15): 8926-8943, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28686422

RESUMEN

Two one-dimensional cyano-bridged coordination polymers, namely, {[MnII(dapsc)][MnIII(CN)6][K(H2O)2.75(MeOH)0.5]}n·0.5n(H2O) (I) and {[MnII(dapsc)][MnIII(CN)6][K(H2O)2(MeOH)2]}n (II), based on alternating high-spin MnII(dapsc) (dapsc = 2,6-diacetylpyridine bis(semicarbazone)) complexes and low-spin orbitally degenerate hexacyanomanganate(III) complexes were synthesized and characterized structurally and magnetically. Static and dynamic magnetic measurements reveal a single-chain magnet (SCM) behavior of I with an energy barrier of Ueff ≈ 40 K. Magnetic properties of I are analyzed in detail in terms of a microscopic theory. It is shown that compound I refers to a peculiar case of SCM that does not fall into the usual Ising and Heisenberg limits due to unconventional character of the MnIII-CN-MnII spin coupling resulting from a nonmagnetic singlet ground state of orbitally degenerate complexes [MnIII(CN)6]3-. The prospects of [MnIII(CN)6]3- complex as magnetically anisotropic molecular building block for engineering molecular magnets are critically analyzed.

5.
Inorg Chem ; 55(19): 9696-9706, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27632142

RESUMEN

In this article we report the synthesis and structure of the new Co(II) complex Et4N[CoII(hfac)3] (I) (hfac = hexafluoroacetylacetonate) exhibiting single-ion magnet (SIM) behavior. The performed analysis of the magnetic characteristics based on the complementary experimental techniques such as static and dynamic magnetic measurements, electron paramagnetic resonance spectroscopy in conjunction with the theoretical modeling (parametric Hamiltonian and ab initio calculations) demonstrates that the SIM properties of I arise from the nonuniaxial magnetic anisotropy with strong positive axial and significant rhombic contributions.

6.
Dalton Trans ; 46(23): 7540-7548, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28573307

RESUMEN

We report a combined experimental characterization and theoretical modeling of the hexa-coordinated high-spin Co(ii) complex cis-[Co(hfac)2(H2O)2] (I). The magnetic static field (DC) data and EPR spectra (measurements were carried out on the powder samples of diluted samples cis-[Co0.02Zn0.98 (hfac)2(H2O)2]) were analyzed with the aid of the parametric Griffith Hamiltonian for the high-spin Co(ii) supported by the ab initio calculations of the crystal field (CF) parameters, g-factors and superexchange parameters between H-bonded Co(ii) ions in the neighboring molecules in a 1D network. This analysis suggests the presence of the easy axis of magnetic anisotropy and also shows the existence of a significant rhombic component. The detected frequency dependent (AC) susceptibility signal shows that complex I exhibits slow paramagnetic relaxation in the applied DC field belonging thus to the class of non-uniaxial field induced single ion magnets with a negative axial component of anisotropy. It is demonstrated that the main contributions to the relaxation come from the direct one-phonon process dominating at low temperatures, while the contribution of the two-phonon Raman process becomes important with increasing temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA