Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(8): 13059-13069, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472928

RESUMEN

A hollow-core anti-resonant fiber for the THz regime is proposed and demonstrated. The proposed fiber is the hexagonal core shape which is directly extruded using a conventional 3D printer. Experimental results show that by using cyclic olefin copolymer (COC), the proposed fiber design provides a low attenuation of ∼3 dB∕m at ∼ 0.86 THz and ∼15 dB∕m at ∼ 0.42 THz.

2.
Sensors (Basel) ; 22(11)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35684846

RESUMEN

In this review we present some of the recent advances in the field of silicon nitride photonic integrated circuits. The review focuses on the material deposition techniques currently available, illustrating the capabilities of each technique. The review then expands on the functionalisation of the platform to achieve nonlinear processing, optical modulation, nonvolatile optical memories and integration with III-V materials to obtain lasing or gain capabilities.


Asunto(s)
Fotones , Compuestos de Silicona
3.
Sensors (Basel) ; 19(16)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394753

RESUMEN

The study of the fabrication, material selection, and properties of microstructured polymer optical fibers (MPOFs) has long attracted great interest. This ever-increasing interest is due to their wide range of applications, mainly in sensing, including temperature, pressure, chemical, and biological species. This manuscript reviews the manufacturing of MPOFs, including the most recent single-step process involving extrusion from a modified 3D printer. MPOFs sensing applications are then discussed, with a stress on the benefit of using polymers.

4.
Opt Express ; 26(24): 32007-32013, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30650779

RESUMEN

Microstructured polymer optical fibers (MPOFs) have long attracted great interest due to their wide range of applications in biological and chemical sensing. In this manuscript, we demonstrate a novel technique of manufacturing MPOF via a single-step procedure by means of a 3D printer. A suspended-core polymer optical fiber has been extruded and directly drawn from a micro-structured 3D printer nozzle by using an acrylonitrile butadiene styrene (ABS) polymer. Near-field imaging at the fiber facet performed at the wavelength λ~1550 nm clearly indicates guidance in the fiber core. The propagation loss has been experimentally demonstrated to be better than α = 1.1 dB/cm. This work points toward direct MPOFs manufacturing of varieties of materials and structures of optical fibers from 3D printers using a single manufacturing step.

5.
Sensors (Basel) ; 18(2)2018 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-29401718

RESUMEN

Optical microfiber-based temperature sensors have been proposed for many applications in a variety of industrial uses, including biomedical, geological, automotive, and defense applications. This increasing demand for these micrometric devices is attributed to their large dynamic range, high sensitivity, fast-response, compactness and robustness. Additionally, they can perform in-situ measurements remotely and in harsh environments. This paper presents an overview of optical microfibers, with a focus on their applications in temperature sensing. This review broadly divides microfiber-based temperature sensors into two categories: resonant and non-resonant microfiber sensors. While the former includes microfiber loop, knot and coil resonators, the latter comprises sensors based on functionally coated/doped microfibers, microfiber couplers, optical gratings and interferometers. In the conclusions, a summary of reported performances is presented.

6.
Sci Rep ; 10(1): 11045, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632256

RESUMEN

Terahertz (THz) technology has witnessed a significant growth in a wide range of applications, including spectroscopy, bio-medical sensing, astronomical and space detection, THz tomography, and non-invasive imaging. Current THz microstructured fibers show a complex fabrication process and their flexibility is severely restricted by the relatively large cross-sections, which turn them into rigid rods. In this paper, we demonstrate a simple and novel method to fabricate low-cost THz microstructured fibers. A cyclic olefin copolymer (TOPAS) suspended-core fiber guiding in the THz is extruded from a structured 3D printer nozzle and directly drawn in a single step process. Spectrograms of broadband THz pulses propagated through different lengths of fiber clearly indicate guidance in the fiber core. Cladding mode stripping allow for the identification of the single mode in the spectrograms and the determination of the average propagation loss (~ 0.11 dB/mm) in the 0.5-1 THz frequency range. This work points towards single step manufacturing of microstructured fibers using a wide variety of materials and geometries using a 3D printer platform.

7.
Sci Rep ; 8(1): 8113, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802299

RESUMEN

Mid-infrared (mid-IR) optical fibers have long attracted great interest due to their wide range of applications in security, biology and chemical sensing. Traditionally, research was directed towards materials with low absorption in the mid-IR region, such as chalcogenides, which are difficult to manipulate and often contain highly toxic elements. In this paper, we demonstrate a Polyethylene Terephthalate Glycol (PETG) hollow-core fiber (HCF) with guiding properties in the mid-IR. Guiding is provided by the fiber geometry, as PETG exhibits a material attenuation 2 orders of magnitude larger than the HCF propagation loss. The structured plastic fiber preforms were fabricated using commercial 3D printing technology and then drawn using a conventional fiber drawing tower. The final PETG fiber outer diameter was 466 µm with a hollow-core diameter of 225 µm. Thermal imaging at the fiber facet performed within the wavelength range 3.5-5 µm clearly indicates air guidance in the fiber hollow-core.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA