RESUMEN
In Sinorhizobium meliloti, nitrogen fixation is regulated in response to oxygen concentration through the FixL-FixJ two-component system (TCS). Besides this conserved TCS, the field isolate SM11 also encodes the hFixL-FxkR TCS, which is responsible for the microoxic response in Rhizobium etli. Through genetic and physiological assays, we evaluated the role of the hFixL-FxkR TCS in S. meliloti SM11. Our results revealed that this regulatory system activates the expression of a fixKf orthologue (fixKa), in response to low oxygen concentration. Null mutations in either hFixL or FxkR promote upregulation of fixK1, a direct target of FixJ. Furthermore, the absence of this TCS translates into higher nitrogen fixation values as well as higher expression of fixN1 in nodules. Individual mutations in each of the fixK-like regulators encoded in the S. meliloti SM11 genome do not completely restrict fixN1 or fixN2 expression, pointing towards redundancy among these regulators. Both copies of fixN are necessary to achieve optimal levels of nitrogen fixation. This work provides evidence that the hFixL-FxkR TCS is activated in response to low oxygen concentration in S. meliloti SM11 and that it negatively regulates the expression of fixK1, fixN1 and nitrogen fixation.
Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Hemoproteínas/genética , Medicago sativa/microbiología , Proteínas de la Membrana/biosíntesis , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Anaerobiosis/fisiología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Hemoproteínas/metabolismo , Histidina Quinasa , Leghemoglobina/metabolismo , Proteínas de la Membrana/metabolismo , Oxígeno/metabolismo , Plásmidos/genética , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/aislamiento & purificaciónRESUMEN
The genus Burkholderia is composed of functionally diverse species, and it can be divided into several clusters. One of these, designated the plant-beneficial-environmental (PBE) Burkholderia cluster, is formed by nonpathogenic species, which in most cases have been found to be associated with plants. It was previously established that members of the PBE group share an N-acyl-homoserine lactone (AHL) quorum-sensing (QS) system, designated BraI/R, that produces and responds to 3-oxo-C14-HSL (OC14-HSL). Moreover, some of them also possess a second AHL QS system, designated XenI2/R2, producing and responding to 3-hydroxy-C8-HSL (OHC8-HSL). In the present study, we performed liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to determine which AHL molecules are produced by each QS system of this group of bacteria. The results showed that XenI2/R2 is mainly responsible for the production of OHC8-HSL and that the BraI/R system is involved in the production of several different AHLs. This analysis also revealed that Burkholderia phymatum STM815 produces greater amounts of AHLs than the other species tested. Further studies showed that the BraR protein of B. phymatum is more promiscuous than other BraR proteins, responding equally well to several different AHL molecules, even at low concentrations. Transcriptome studies with Burkholderia xenovorans LB400 and B. phymatum STM815 revealed that the BraI/R regulon is species specific, with exopolysaccharide production being the only common phenotype regulated by this system in the PBE cluster. In addition, BraI/R was shown not to be important for plant nodulation by B. phymatum strains or for endophytic colonization and growth promotion of maize by B. phytofirmans PsJN.
Asunto(s)
Burkholderia/genética , Genoma Bacteriano , Regulón , Acil-Butirolactonas/metabolismo , Burkholderia/fisiología , Cromatografía Liquida , Análisis de Secuencia por Matrices de Oligonucleótidos , Percepción de Quorum , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en TándemRESUMEN
Background: The use of breed-informative genetic markers, specifically coding Single Nucleotide Polymorphisms (SNPs), is crucial for breed traceability, authentication of meat and dairy products, and the preservation and improvement of pig breeds. By identifying breed informative markers, we aimed to gain insights into the genetic mechanisms that influence production traits, enabling informed decisions in animal management and promoting sustainable pig production to meet the growing demand for animal products. Methods: Our dataset consists of 300 coding SNPs genotyped from three Italian commercial pig populations: Landrace, Yorkshire, and Duroc. Firstly, we analyzed the genetic diversity among the populations. Then, we applied a discriminant analysis of principal components to identify the most informative SNPs for discriminating between these populations. Lastly, we conducted a functional enrichment analysis to identify the most enriched pathways related to the genetic variation observed in the pig populations. Results: The alpha diversity indexes revealed a high genetic diversity within the three breeds. The higher proportion of observed heterozygosity than expected revealed an excess of heterozygotes in the populations that was supported by negative values of the fixation index (FIS) and deviations from the Hardy-Weinberg equilibrium. The Euclidean distance, the pairwise FST, and the pairwise Nei's GST genetic distances revealed that Yorkshire and Landrace breeds are genetically the closest, with distance values of 2.242, 0.029, and 0.033, respectively. Conversely, Landrace and Duroc breeds showed the highest genetic divergence, with distance values of 2.815, 0.048, and 0.052, respectively. We identified 28 significant SNPs that are related to phenotypic traits and these SNPs were able to differentiate between the pig breeds with high accuracy. The Functional Enrichment Analysis of the informative SNPs highlighted biological functions related to DNA packaging, chromatin integrity, and the preparation of DNA into higher-order structures. Conclusion: Our study sheds light on the genetic underpinnings of phenotypic variation among three Italian pig breeds, offering potential insights into the mechanisms driving breed differentiation. By prioritizing breed-specific coding SNPs, our approach enables a more focused analysis of specific genomic regions relevant to the research question compared to analyzing the entire genome.
RESUMEN
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), declared as a pandemic due to its rapid spread worldwide. In this study, we investigate the genetic diversity and genomic epidemiology of SARS-CoV-2, using 22 virus genome sequences reported by three different laboratories in Morocco till June 7,2020, as well as 40,366 virus genomes from all around the world. The SARS-CoV-2 genomes from Moroccan patients revealed 62 mutations, of which 30 were mis-sense mutations. The mutations Spike_D614G and NSP12_P323L were present in all the 22 analyzed sequences, followed by N_G204R and N_R203K, which occurred in 9 among the 22 sequences. The mutations NSP10_R134S, NSP15_D335N, NSP16_I169L, NSP3_L431H, NSP3_P1292L and Spike_V6F occurred once in Moroccan sequences, with no record in other sequences worldwide. Phylogenetic analyses revealed that Moroccan SARS-CoV-2 genomes included 9 viruses belonging to Clade 20A, 9 to Clade 20B and 2 to Clade 20C, suggesting that the epidemic spread in Morocco did not display a predominant SARS-CoV-2 route. Therefore, multiple and unrelated introductions of SARS-CoV-2 into Morocco through different routes have occurred, giving rise to the diversity of virus genomes in the country. Further, in all probability, the SARS-CoV-2 circulated in a cryptic way in Morocco, starting from January 15, 2020 before the first case was officially discovered on March 2, 2020.
RESUMEN
The purpose of this work was to study the genetic diversity of the nodule-forming bacteria associated with native populations of Vachellia gummifera growing wild in Morocco. The nearly complete 16S rRNA gene sequences from three selected strains, following ARDRA and REP-PCR results, revealed they were members of the genus Ensifer and the sequencing of the housekeeping genes recA, gyrB, dnaK and rpoB, and their concatenated phylogenetic analysis, showed that the 3 strains belong to the species E. fredii. Based on the nodC and nodA phylogenies, the 3 strains clearly diverged from the type and other reference strains of E. fredii and formed a clearly separated cluster. The strains AGA1, AGA2 and AGB23 did not form nodules on Glycine max, Phaseolus vulgaris and Medicago truncatula, and effectively nodulated V. gummifera, Acacia cyanophylla, Prosopis chilensis and Leucaena leucocephala. Based on similarities of the nodC and nodA symbiotic genes and differences in the host range, the strains isolated from Moroccan endemic V. gummifera may form a different symbiovar within Ensifer species, for which the name "vachelliae" is proposed.
Asunto(s)
Fabaceae/microbiología , Variación Genética , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium/clasificación , Simbiosis , ADN Bacteriano/genética , Genes Bacterianos/genética , Genes Esenciales/genética , Especificidad del Huésped , Marruecos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sinorhizobium/genética , Sinorhizobium/crecimiento & desarrollo , Simbiosis/genéticaRESUMEN
The common bean (Phaseolus vulgaris L.) low phytic acid (lpa1) biofortified genotype produces seeds with improved nutritional characteristics and does not display negative pleiotropic effects. Here we demonstrated that lpa1 plants establish an efficient nitrogen-fixing symbiosis with Rhizobium etli CE3. The lpa1 nodules showed a higher expression of nodule-function related genes than the nodules of the parental wild type genotype (BAT 93). We analyzed the response to water stress of lpa1 vs. BAT 93 plants grown under fertilized or under symbiotic N2-fixation conditions. Water stress was induced by water withholding (up to 14% soil moisture) to fertilized or R. etli nodulated plants previously grown with normal irrigation. The fertilized lpa1 plants showed milder water stress symptoms during the water deployment period and after the rehydration recovery period when lpa1 plants showed less biomass reduction. The symbiotic water-stressed lpa1 plants showed decreased nitrogenase activity that coincides with decreased sucrose synthase gene expression in nodules; lower turgor weight to dry weight (DW) ratio, which has been associated with higher drought resistance index; downregulation of carbon/nitrogen (C/N)-related and upregulation of stress-related genes. Higher expression of stress-related genes was also observed in bacteroids of stressed lpa1 plants that also displayed very high expression of the symbiotic cbb3 oxidase (fixNd).
RESUMEN
OBJECTIVE: to study the effect of co-inoculation with Ensifer meliloti and Halomonas maura of the leguminous Medicago sativa L., on growth, nutritional and functional value, grown under salinity conditions. METHODS: plants of M. sativa were grown in a solution with a mixture of salts (CaSO4, MgCl, NaCl and NaHCO 3) and were co-inoculated with its specific rhizobium and the halophilic moderated bacterium H. maura. Different physiologic parameters were determined, as well as, nitrogen and minerals content. Furthermore, an assay of in vitro digestibility was carried out. RESULTS: salinity had a negative effect on the plants; however, co-inoculation increased yield, nitrogen content, total minerals, Ca and Mg. Moreover, physiologic parameters as water potential and leghemoglobin content in fresh nodules were higher compared to those of plants inoculated only with E. meliloti. Both, salinity and bacterial treatment with E. meliloti and H. maura increased the antioxidant capacity of the legume, in dialyzates and retentates collected after an in vitro digestibility assay. CONCLUSION: co-inoculation of plants with E. meliloti and H. maura could improve the alfalfa yield under specific salinity conditions, increasing the nutritional and functional value of the plants. M. sativa could be considered in the formulations of nutritional supplements for the human diet.
Objetivo: estudiar el efecto de la inoculación con Ensifer meliloti y Halomonas maura sobre el crecimiento y el valor nutricional y funcional de la leguminosa Medicago sativa L., cultivada bajo condiciones de salinidad. Método: las plantas de M. sativa se cultivaron con una solución de mezcla de sales CaSO4, MgCl, NaCl and Na- HCO3 y se coinocularon con su rizobio específico y la bacteria H. maura. Se determinaron los parámetros fisiológicos de las plantas, así como el contenido en nitrógeno y minerales, y se llevó a cabo un proceso de digestibilidad in vitro. Resultados: la salinidad ejerció un efecto negativo sobre las plantas; sin embargo, la coinoculación de las mismas incrementó su productividad, el contenido en nitrógeno, minerales totales, Ca y Mg. Además, los parámetros fisiológicos de potencial hídrico y concentración de leghemoglobina se incrementaron. Tanto la salinidad como la coinoculación de las plantas aumentaron la capacidad antioxidante de la leguminosa en los dializados y retenidos obtenidos tras someter a la planta a un proceso de digestibilidad in vitro. Conclusión: la coinoculación con E. meliloti y H. maura podría mejorar el cultivo de la alfalfa bajo condiciones específicas de salinidad, aumentando su composición nutricional y funcional, pudiendo considerarse en la formulación de suplementos nutricionales para el consumo humano.
Asunto(s)
Alimentos Funcionales/análisis , Halomonas , Medicago sativa/química , Valor Nutritivo , Probióticos/análisis , Antioxidantes/farmacología , Suplementos Dietéticos , Digestión , Leghemoglobina/análisis , Minerales/análisis , Sinorhizobium melilotiRESUMEN
A modABC gene cluster that encodes an ABC-type, high-affinity molybdate transporter from Bradyrhizobium japonicum has been isolated and characterized. B. japonicum modA and modB mutant strains were unable to grow aerobically or anaerobically with nitrate as nitrogen source or as respiratory substrate, respectively, and lacked nitrate reductase activity. The nitrogen-fixing ability of the mod mutants in symbiotic association with soybean plants grown in a Mo-deficient mineral solution was severely impaired. Addition of molybdate to the bacterial growth medium or to the plant mineral solution fully restored the wild-type phenotype. Because the amount of molybdate required for suppression of the mutant phenotype either under free-living or under symbiotic conditions was dependent on sulphate concentration, it is likely that a sulphate transporter is also involved in Mo uptake in B. japonicum. The promoter region of the modABC genes has been characterized by primer extension. Reverse transcription and expression of a transcriptional fusion, P(modA)-lacZ, was detected only in a B. japonicum modA mutant grown in a medium without molybdate supplementation. These findings indicate that transcription of the B. japonicum modABC genes is repressed by molybdate.