Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938767

RESUMEN

Neurodevelopmental changes and impaired stress resistance have been implicated in the pathogenesis of bipolar disorder (BD), but the underlying regulatory mechanisms are unresolved. Here we describe a human cerebral organoid model of BD that exhibits altered neural development, elevated neural network activity, and a major shift in the transcriptome. These phenotypic changes were reproduced in cerebral organoids generated from iPS cell lines derived in different laboratories. The BD cerebral organoid transcriptome showed highly significant enrichment for gene targets of the transcriptional repressor REST. This was associated with reduced nuclear REST and REST binding to target gene recognition sites. Reducing the oxygen concentration in organoid cultures to a physiological range ameliorated the developmental phenotype and restored REST expression. These effects were mimicked by treatment with lithium. Reduced nuclear REST and derepression of REST targets genes were also observed in the prefrontal cortex of BD patients. Thus, an impaired cellular stress response in BD cerebral organoids leads to altered neural development and transcriptional dysregulation associated with downregulation of REST. These findings provide a new model and conceptual framework for exploring the molecular basis of BD.

2.
Nucleic Acids Res ; 49(10): e58, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33693773

RESUMEN

We present barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel insitu analyses (BOLORAMIS), a reverse transcription-free method for spatially-resolved, targeted, in situ RNA identification of single or multiple targets. BOLORAMIS was demonstrated on a range of cell types and human cerebral organoids. Singleplex experiments to detect coding and non-coding RNAs in human iPSCs showed a stem-cell signature pattern. Specificity of BOLORAMIS was found to be 92% as illustrated by a clear distinction between human and mouse housekeeping genes in a co-culture system, as well as by recapitulation of subcellular localization of lncRNA MALAT1. Sensitivity of BOLORAMIS was quantified by comparing with single molecule FISH experiments and found to be 11%, 12% and 35% for GAPDH, TFRC and POLR2A, respectively. To demonstrate BOLORAMIS for multiplexed gene analysis, we targeted 96 mRNAs within a co-culture of iNGN neurons and HMC3 human microglial cells. We used fluorescence in situ sequencing to detect error-robust 8-base barcodes associated with each of these genes. We then used this data to uncover the spatial relationship among cells and transcripts by performing single-cell clustering and gene-gene proximity analyses. We anticipate the BOLORAMIS technology for in situ RNA detection to find applications in basic and translational research.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hibridación Fluorescente in Situ/métodos , Oligonucleótidos/química , ARN/análisis , Análisis de la Célula Individual/métodos , Animales , Línea Celular , Humanos , Ratones
3.
J Immunol ; 202(11): 3256-3266, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31010852

RESUMEN

Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate ß-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1ß) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.


Asunto(s)
Candida albicans/fisiología , Candidiasis/metabolismo , Membrana Celular/metabolismo , Proteína Kangai-1/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Fagosomas/metabolismo , Animales , Candidiasis/inmunología , Línea Celular , Predisposición Genética a la Enfermedad , Humanos , Inmunidad Celular , Interleucina-1beta/metabolismo , Proteína Kangai-1/genética , Lectinas Tipo C/genética , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
4.
FASEB J ; 33(11): 12500-12514, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31408613

RESUMEN

The tetraspanin CD82 is a potent suppressor of tumor metastasis and regulates several processes including signal transduction, cell adhesion, motility, and aggregation. However, the mechanisms by which CD82 participates in innate immunity are unknown. We report that CD82 is a key regulator of TLR9 trafficking and signaling. TLR9 recognizes unmethylated cytosine-phosphate-guanine (CpG) motifs present in viral, bacterial, and fungal DNA. We demonstrate that TLR9 and CD82 associate in macrophages, which occurs in the endoplasmic reticulum (ER) and post-ER. Moreover, CD82 is essential for TLR9-dependent myddosome formation in response to CpG stimulation. Finally, CD82 modulates TLR9-dependent NF-κB nuclear translocation, which is critical for inflammatory cytokine production. To our knowledge, this is the first time a tetraspanin has been implicated as a key regulator of TLR signaling. Collectively, our study demonstrates that CD82 is a specific regulator of TLR9 signaling, which may be critical in cancer immunotherapy approaches and coordinating the innate immune response to pathogens.-Khan, N. S., Lukason, D. P., Feliu, M., Ward, R. A., Lord, A. K., Reedy, J. L., Ramirez-Ortiz, Z. G., Tam, J. M., Kasperkovitz, P. V., Negoro, P. E., Vyas, T. D., Xu, S., Brinkmann, M. M., Acharaya, M., Artavanis-Tsakonas, K., Frickel, E.-M., Becker, C. E., Dagher, Z., Kim, Y.-M., Latz, E., Ploegh, H. L., Mansour, M. K., Miranti, C. K., Levitz, S. M., Vyas, J. M. CD82 controls CpG-dependent TLR9 signaling.


Asunto(s)
Núcleo Celular/inmunología , Proteína Kangai-1/inmunología , Macrófagos/inmunología , Oligodesoxirribonucleótidos/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 9/inmunología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Animales , Núcleo Celular/genética , Citocinas/genética , Citocinas/inmunología , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/patología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Proteína Kangai-1/genética , Macrófagos/patología , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/inmunología , Células RAW 264.7 , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 9/genética
5.
Molecules ; 25(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936569

RESUMEN

A molecular imaging probe to fluorescently image the ß-site of the amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) and cathepsin D (CatD) enzymes associated with Alzheimer's disease (AD) was designed and synthesized. This imaging probe was built upon iron oxide nanoparticles (cross-linked dextran iron oxide nanoparticles, or CLIO). Peptide substrates containing a terminal near-infrared fluorochrome (fluorophore emitting at 775 nm for CatD or fluorophore emitting at 669 nm for BACE1) were conjugated to the CLIO nanoparticles. The CatD substrate contained a phenylalanine-phenylalanine cleavage site more specific to CatD than BACE1. The BACE1 substrate contained the sequence surrounding the leucine-asparagine cleavage site of the BACE1 found in the Swedish mutation of APP, which is more specific to BACE1 than CatD. These fluorescently-labeled peptide substrates were then conjugated to the nanoparticle. The nanoparticle probes were purified by gel filtration, and their fluorescence intensities were determined using a fluorescence plate reader. The CatD peptide substrate demonstrated a 15.5-fold increase in fluorescence when incubated with purified CatD enzyme, and the BACE1 substrate exhibited a 31.5-fold increase in fluorescence when incubated with purified BACE1 enzyme. Probe specificity was also demonstrated in the human H4 neuroglioma cells and the H4 cells stably transfected with BACE1 in which the probe monitored enzymatic cleavage. In the H4 and H4-BACE1 cells, BACE1 and active CatD activity increased, an occurrence that was reflected in enzyme expression levels as determined by immunoblotting. These results demonstrate the applicability of this probe for detecting potential Alzheimer's enzyme biomarkers.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Secretasas de la Proteína Precursora del Amiloide/química , Ácido Aspártico Endopeptidasas/química , Catepsina D/química , Imagen Molecular , Enfermedad de Alzheimer/genética , Secuencia de Aminoácidos/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/aislamiento & purificación , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/aislamiento & purificación , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/aislamiento & purificación , Biomarcadores/química , Catepsina D/genética , Catepsina D/aislamiento & purificación , Colorantes Fluorescentes/química , Colorantes Fluorescentes/aislamiento & purificación , Humanos
6.
J Immunol ; 196(5): 2249-61, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26829985

RESUMEN

Dectin-1 and TLR9 play distinct roles in the recognition and induction of innate immune responses to Aspergillus fumigatus and Candida albicans. Dectin-1 is a receptor for the major fungal cell wall carbohydrate ß-1,3 glucan that induces inflammatory cytokines and controls phagosomal maturation through spleen tyrosine kinase activation. TLR9 is an endosomal TLR that also modulates the inflammatory cytokine response to fungal pathogens. In this study, we demonstrate that ß-1,3 glucan beads are sufficient to induce dynamic redistribution and accumulation of cleaved TLR9 to phagosomes. Trafficking of TLR9 to A. fumigatus and C. albicans phagosomes requires Dectin-1 recognition. Inhibition of phagosomal acidification blocks TLR9 accumulation on phagosomes containing ß-1,3 glucan beads. Dectin-1-mediated spleen tyrosine kinase activation is required for TLR9 trafficking to ß-1,3 glucan-, A. fumigatus-, and C. albicans-containing phagosomes. In addition, Dectin-1 regulates TLR9-dependent gene expression. Collectively, our study demonstrates that recognition of ß-1,3 glucan by Dectin-1 triggers TLR9 trafficking to ß-1,3 glucan-containing phagosomes, which may be critical in coordinating innate antifungal defense.


Asunto(s)
Lectinas Tipo C/metabolismo , Fagosomas/metabolismo , Receptor Toll-Like 9/metabolismo , beta-Glucanos/metabolismo , Animales , Aspergillus fumigatus/inmunología , Candida albicans/inmunología , Línea Celular , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Concentración de Iones de Hidrógeno , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Modelos Biológicos , Fagocitosis , Transporte de Proteínas , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Quinasa Syk , Receptor Toll-Like 9/genética
7.
Infect Immun ; 85(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28031265

RESUMEN

Dematiaceous molds are found ubiquitously in the environment and cause a wide spectrum of human disease, including infections associated with high rates of mortality. Despite this, the mechanism of the innate immune response has been less well studied, although it is key in the clearance of fungal pathogens. Here, we focus on Exserohilum rostratum, a dematiaceous mold that caused 753 infections during a multistate outbreak due to injection of contaminated methylprednisolone. We show that macrophages are incapable of phagocytosing Exserohilum Despite a lack of phagocytosis, macrophage production of tumor necrosis factor alpha is triggered by hyphae but not spores and depends upon Dectin-1, a C-type lectin receptor. Dectin-1 is specifically recruited to the macrophage-hyphal interface but not the macrophage-spore interface due to differences in carbohydrate antigen expression between these two fungal forms. Corticosteroid and antifungal therapy perturb this response, resulting in decreased cytokine production. In vivo soft tissue infection in wild-type mice demonstrated that Exserohilum provokes robust neutrophilic and granulomatous inflammation capable of thwarting fungal growth. However, coadministration of methylprednisolone acetate results in robust hyphal tissue invasion and a significant reduction in immune cell recruitment. Our results suggest that Dectin-1 is crucial for macrophage recognition and the macrophage response to Exserohilum and that corticosteroids potently attenuate the immune response to this pathogen.


Asunto(s)
Ascomicetos/inmunología , Interacciones Huésped-Patógeno/inmunología , Lectinas Tipo C/metabolismo , Micosis/inmunología , Micosis/metabolismo , Corticoesteroides/farmacología , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Carbohidratos/inmunología , Pared Celular/inmunología , Citocinas/biosíntesis , Humanos , Hifa , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Micosis/microbiología , Fagocitosis , Esporas Fúngicas , Factor de Necrosis Tumoral alfa/metabolismo
8.
J Infect Dis ; 210(11): 1844-54, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24842831

RESUMEN

Autophagy has been postulated to play role in mammalian host defense against fungal pathogens, although the molecular details remain unclear. Here, we show that primary macrophages deficient in the autophagic factor LC3 demonstrate diminished fungicidal activity but increased cytokine production in response to Candida albicans stimulation. LC3 recruitment to fungal phagosomes requires activation of the fungal pattern receptor dectin-1. LC3 recruitment to the phagosome also requires Syk signaling but is independent of all activity by Toll-like receptors and does not require the presence of the adaptor protein Card9. We further demonstrate that reactive oxygen species generation by NADPH oxidase is required for LC3 recruitment to the fungal phagosome. These observations directly link LC3 to the inflammatory pathway against C. albicans in macrophages.


Asunto(s)
Hongos/inmunología , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Candida albicans/inmunología , Línea Celular , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/inmunología , Ratones , Proteínas Asociadas a Microtúbulos/genética , Modelos Biológicos , NADPH Oxidasas/metabolismo , Fagosomas/inmunología , Fagosomas/microbiología , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Proteoglicanos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Quinasa Syk , Factor de Necrosis Tumoral alfa/biosíntesis , beta-Glucanos/metabolismo
9.
J Biol Chem ; 288(22): 16043-54, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23609446

RESUMEN

Elimination of fungal pathogens by phagocytes requires phagosome maturation, a process that involves the recruitment and fusion of intracellular proteins. The role of Dectin-1, a ß-1,3-glucan receptor, critical for fungal recognition and triggering of Th17 responses, to phagosomal maturation has not been defined. We show that GFP-Dectin-1 translocates to the fungal phagosome, but its signal decays after 2 h. Inhibition of acidification results in retention of GFP-Dectin-1 to phagosome membranes highlighting the requirement for an acidic pH. Following ß-1,3-glucan recognition, GFP-Dectin-1 undergoes tyrosine phosphorylation by Src kinases with subsequent Syk activation. Our results demonstrate that Syk is activated independently of intraphagosomal pH. Inhibition of Src or Syk results in prolonged retention of GFP-Dectin-1 to the phagosome signifying a link between Syk and intraphagosomal pH. ß-1,3-glucan phagosomes expressing a signaling incompetent Dectin-1 failed to mature as demonstrated by prolonged Dectin-1 retention, presence of Rab5B, failure to acquire LAMP-1 and inability to acidify. Phagosomes containing Candida albicans also require Dectin-1-dependent Syk activation for phagosomal maturation. Taken together, these results support a model where Dectin-1 not only controls internalization of ß-1,3-glucan containing cargo and triggers proinflammatory cytokines, but also acts as a master regulator for subsequent phagolysosomal maturation through Syk activation.


Asunto(s)
Candida albicans/metabolismo , Lectinas Tipo C/metabolismo , Fagosomas/metabolismo , beta-Glucanos/metabolismo , Animales , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Activación Enzimática/genética , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lectinas Tipo C/genética , Ratones , Fagosomas/genética , Fagosomas/microbiología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Quinasa Syk , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
10.
Med Microbiol Immunol ; 203(6): 415-24, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25129478

RESUMEN

Beyond its well-documented role in reproduction, embryogenesis and maintenance of body tissues, vitamin A has attracted considerable attention due to its immunomodulatory effects on both the innate and the adaptive immune responses. In infectious diseases, vitamin A has been shown to have a host-protective effect in infections of bacterial, viral or protozoan origin. Nevertheless, its impact in fungal infections remains unknown. Meanwhile, the frequency of invasive mycoses keeps on growing, with Candida albicans being the major opportunistic fungal pathogen and associated with high mortality. In the present work, we explored the impact of all-trans retinoic acid (atRA), the most active metabolite of vitamin A, on the innate immune response against C. albicans in human monocytes. Our results show a strong immunomodulatory role for atRA, leading to a significant down-regulation of the fungi-induced expression and secretion of the pro-inflammatory cytokines TNFα, IL6 and IL12. Moreover, atRA significantly suppressed the expression of Dectin-1, a major fungal pattern recognition receptor, as well as the Dectin-1-dependent cytokine production. Both RAR-dependent and RAR-independent mechanisms seem to play a role in the atRA-mediated immunomodulation. Our findings open a new direction to elucidate the role of vitamin A on the immune function during fungal infections.


Asunto(s)
Candida albicans/inmunología , Factores Inmunológicos/metabolismo , Monocitos/efectos de los fármacos , Monocitos/inmunología , Vitamina A/metabolismo , Citocinas/metabolismo , Humanos , Lectinas Tipo C/análisis
11.
Nat Microbiol ; 9(1): 95-107, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168615

RESUMEN

The host type I interferon (IFN) pathway is a major signature of inflammation induced by the human fungal pathogen, Candida albicans. However, the molecular mechanism for activating this pathway in the host defence against C. albicans remains unknown. Here we reveal that mice lacking cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway components had improved survival following an intravenous challenge by C. albicans. Biofilm-associated C. albicans DNA packaged in extracellular vesicles triggers the cGAS-STING pathway as determined by induction of interferon-stimulated genes, IFNß production, and phosphorylation of IFN regulatory factor 3 and TANK-binding kinase 1. Extracellular vesicle-induced activation of type I IFNs was independent of the Dectin-1/Card9 pathway and did not require toll-like receptor 9. Single nucleotide polymorphisms in cGAS and STING potently altered inflammatory cytokine production in human monocytes challenged by C. albicans. These studies provide insights into the early innate immune response induced by a clinically significant fungal pathogen.


Asunto(s)
Candidiasis , Interferón Tipo I , Animales , Ratones , Candida albicans/patogenicidad , Proteínas Adaptadoras de Señalización CARD/metabolismo , Inmunidad Innata , Interferón Tipo I/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Candidiasis/metabolismo , Candidiasis/patología
12.
Mater Today Bio ; 19: 100560, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36756210

RESUMEN

Filamentous fungi drive carbon and nutrient cycling across our global ecosystems, through its interactions with growing and decaying flora and their constituent microbiomes. The remarkable metabolic diversity, secretion ability, and fiber-like mycelial structure that have evolved in filamentous fungi have been increasingly exploited in commercial operations. The industrial potential of mycelial fermentation ranges from the discovery and bioproduction of enzymes and bioactive compounds, the decarbonization of food and material production, to environmental remediation and enhanced agricultural production. Despite its fundamental impact in ecology and biotechnology, molds and mushrooms have not, to-date, significantly intersected with synthetic biology in ways comparable to other industrial cell factories (e.g. Escherichia coli,Saccharomyces cerevisiae, and Komagataella phaffii). In this review, we summarize a suite of synthetic biology and computational tools for the mining, engineering and optimization of filamentous fungi as a bioproduction chassis. A combination of methods across genetic engineering, mutagenesis, experimental evolution, and computational modeling can be used to address strain development bottlenecks in established and emerging industries. These include slow mycelium growth rate, low production yields, non-optimal growth in alternative feedstocks, and difficulties in downstream purification. In the scope of biomanufacturing, we then detail previous efforts in improving key bottlenecks by targeting protein processing and secretion pathways, hyphae morphogenesis, and transcriptional control. Bringing synthetic biology practices into the hidden world of molds and mushrooms will serve to expand the limited panel of host organisms that allow for commercially-feasible and environmentally-sustainable bioproduction of enzymes, chemicals, therapeutics, foods, and materials of the future.

13.
Autophagy ; 19(3): 926-942, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36016494

RESUMEN

Macroautophagy/autophagy proteins have been linked with the development of immune-mediated diseases including lupus, but the mechanisms for this are unclear due to the complex roles of these proteins in multiple immune cell types. We have previously shown that a form of noncanonical autophagy induced by ITGAV/alpha(v) integrins regulates B cell activation by viral and self-antigens, in mice. Here, we investigate the involvement of this pathway in B cells from human tissues. Our data reveal that autophagy is specifically induced in the germinal center and memory B cell subpopulations of human tonsils and spleens. Transcriptomic analysis show that the induction of autophagy is related to unique aspects of activated B cells such as mitochondrial metabolism. To understand the function of ITGAV/alpha(v) integrin-dependent autophagy in human B cells, we used CRISPR-mediated knockdown of autophagy genes. Integrating data from primary B cells and knockout cells, we found that ITGAV/alpha(v)-dependent autophagy limits activation of specific pathways related to B cell responses, while promoting others. These data provide new mechanistic links for autophagy and B-cell-mediated immune dysregulation in diseases such as lupus.


Asunto(s)
Autofagia , Integrina alfaV , Humanos , Animales , Ratones , Integrina alfaV/genética , Integrina alfaV/metabolismo , Transcriptoma , Linfocitos B/metabolismo , Mitocondrias/metabolismo
14.
Infect Immun ; 79(12): 4858-67, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21947771

RESUMEN

Phagocytic responses are critical for effective host defense against opportunistic fungal pathogens. Macrophages sample the phagosomal content and orchestrate the innate immune response. Toll-like receptor 9 (TLR9) recognizes unmethylated CpG DNA and is activated by fungal DNA. Here we demonstrate that specific triggering of TLR9 recruitment to the macrophage phagosomal membrane is a conserved feature of fungi of distinct phylogenetic origins, including Candida albicans, Saccharomyces cerevisiae, Malassezia furfur, and Cryptococcus neoformans. The capacity to trigger phagosomal TLR9 recruitment was not affected by a loss of fungal viability or cell wall integrity. TLR9 deficiency has been linked to increased resistance to murine candidiasis and to restriction of fungal growth in vivo. Macrophages lacking TLR9 demonstrate a comparable capacity for phagocytosis and normal phagosomal maturation compared to wild-type macrophages. We now show that TLR9 deficiency increases macrophage tumor necrosis factor alpha (TNF-α) production in response to C. albicans and S. cerevisiae, independent of yeast viability. The increase in TNF-α production was reversible by functional complementation of the TLR9 gene, confirming that TLR9 was responsible for negative modulation of the cytokine response. Consistently, TLR9 deficiency enhanced the macrophage effector response by increasing macrophage nitric oxide production. Moreover, microbicidal activity against C. albicans and S. cerevisiae was more efficient in TLR9 knockout (TLR9KO) macrophages than in wild-type macrophages. In conclusion, our data demonstrate that TLR9 is compartmentalized selectively to fungal phagosomes and negatively modulates macrophage antifungal effector functions. Our data support a model in which orchestration of antifungal innate immunity involves a complex interplay of fungal ligand combinations, host cell machinery rearrangements, and TLR cooperation and antagonism.


Asunto(s)
Candida albicans/inmunología , Macrófagos/metabolismo , Saccharomyces cerevisiae/inmunología , Receptor Toll-Like 9/metabolismo , Animales , Línea Celular , Expresión Génica , Humanos , Inmunidad Innata , Ratones , Ratones Noqueados , Fagocitosis/fisiología , Receptor Toll-Like 9/genética
15.
J Fungi (Basel) ; 7(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34065016

RESUMEN

Coccidioidomycosis, otherwise known as Valley Fever, is caused by the dimorphic fungi Coccidioides immitis and C. posadasii. While most clinical cases present with self-limiting pulmonary infection, dissemination of Coccidioides spp. results in prolonged treatment and portends higher mortality rates. While the structure, genome, and niches for Coccidioides have provided some insight into the pathogenesis of disease, the underlying immunological mechanisms of clearance or inability to contain the infection in the lung are poorly understood. This review focuses on the known innate and adaptive immune responses to Coccidioides and highlights three important areas of uncertainty and potential approaches to address them. Closing these gaps in knowledge may enable new preventative and therapeutic strategies to be pursued.

16.
Open Forum Infect Dis ; 8(11): ofab483, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34805429

RESUMEN

The field of infectious diseases currently takes a reactive approach and treats infections as they present in patients. Although certain populations are known to be at greater risk of developing infection (eg, immunocompromised), we lack a systems approach to define the true risk of future infection for a patient. Guided by impressive gains in "omics" technologies, future strategies to infectious diseases should take a precision approach to infection through identification of patients at intermediate and high-risk of infection and deploy targeted preventative measures (ie, prophylaxis). The advances of high-throughput immune profiling by multiomics approaches (ie, transcriptomics, epigenomics, metabolomics, proteomics) hold the promise to identify patients at increased risk of infection and enable risk-stratifying approaches to be applied in the clinic. Integration of patient-specific data using machine learning improves the effectiveness of prediction, providing the necessary technologies needed to propel the field of infectious diseases medicine into the era of personalized medicine.

17.
Microbiol Spectr ; 9(2): e0031321, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34523989

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has brought about the unprecedented expansion of highly sensitive molecular diagnostics as a primary infection control strategy. At the same time, many laboratories have shifted focus to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research and diagnostic development, leading to large-scale production of SARS-CoV-2 nucleic acids that can interfere with these tests. We have identified multiple instances, in independent laboratories, in which nucleic acids generated in research settings are suspected to have caused researchers to test positive for SARS-CoV-2 in surveillance testing. In some cases, the affected individuals did not work directly with these nucleic acids but were exposed via a contaminated surface or object. Though researchers have long been vigilant of DNA contaminants, the transfer of these contaminants to SARS-CoV-2 testing samples can result in anomalous test results. The impact of these incidents stretches into the public sphere, placing additional burdens on public health resources, placing affected researchers and their contacts in isolation and quarantine, removing them from the testing pool for 3 months, and carrying the potential to trigger shutdowns of classrooms and workplaces. We report our observations as a call for increased stewardship over nucleic acids with the potential to impact both the use and development of diagnostics. IMPORTANCE To meet the challenges imposed by the COVID-19 pandemic, research laboratories shifted their focus and clinical diagnostic laboratories developed and utilized new assays. Nucleic acid-based testing became widespread and, for the first time, was used as a prophylactic measure. We report 15 cases of researchers at two institutes testing positive for SARS-CoV-2 on routine surveillance tests, in the absence of any symptoms or transmission. These researchers were likely contaminated with nonhazardous nucleic acids generated in the laboratory in the course of developing new SARS-CoV-2 diagnostics. These contaminating nucleic acids were persistent and widespread throughout the laboratory. We report these findings as a cautionary tale to those working with nucleic acids used in diagnostic testing and as a call for careful stewardship of diagnostically relevant molecules. Our conclusions are especially relevant as at-home COVID-19 testing gains traction in the marketplace and these amplicons may impact on the general public.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Contaminación de ADN , ADN Viral/genética , SARS-CoV-2/genética , Reacciones Falso Positivas , Humanos , Técnicas de Diagnóstico Molecular , ARN Viral/genética , SARS-CoV-2/aislamiento & purificación
18.
Sci Transl Med ; 13(580)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568518

RESUMEN

Nucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome. The engineered vectors elicited markedly reduced innate immune and T cell responses and enhanced gene expression in clinically relevant mouse and pig models across different tissues, including liver, muscle, and retina. Subretinal administration of higher-dose AAV in pigs resulted in photoreceptor pathology with microglia and T cell infiltration. These adverse findings were avoided in the contralateral eyes of the same animals that were injected with the engineered vectors. However, intravitreal injection of higher-dose AAV in macaques, a more immunogenic route of administration, showed that the engineered vector delayed but did not prevent clinical uveitis, suggesting that other immune factors in addition to TLR9 may contribute to intraocular inflammation in this model. Our results demonstrate that linking specific immunomodulatory noncoding sequences to much longer therapeutic nucleic acids can "cloak" the vector from inducing unwanted immune responses in multiple, but not all, models. This "coupled immunomodulation" strategy may widen the therapeutic window for AAV therapies as well as other DNA-based gene transfer methods.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Inmunidad Innata , Ratones , Porcinos
19.
mBio ; 11(6)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203761

RESUMEN

The mechanism of protection against cholera afforded by previous illness or vaccination is currently unknown. We have recently shown that antibodies targeting O-specific polysaccharide (OSP) of Vibrio cholerae correlate highly with protection against cholera. V. cholerae is highly motile and possesses a flagellum sheathed in OSP, and motility of V. cholerae correlates with virulence. Using high-speed video microscopy and building upon previous animal-related work, we demonstrate that sera, polyclonal antibody fractions, and OSP-specific monoclonal antibodies recovered from humans surviving cholera block V. cholerae motility at both subagglutinating and agglutinating concentrations. This antimotility effect is reversed by preadsorbing sera and polyclonal antibody fractions with purified OSP and is associated with OSP-specific but not flagellin-specific monoclonal antibodies. Fab fragments of OSP-specific polyclonal antibodies do not inhibit motility, suggesting a requirement for antibody-mediated cross-linking in motility inhibition. We show that OSP-specific antibodies do not directly affect V. cholerae viability, but that OSP-specific monoclonal antibody highly protects against death in the murine cholera model. We used in vivo competitive index studies to demonstrate that OSP-specific antibodies impede colonization and survival of V. cholerae in intestinal tissues and that this impact is motility dependent. Our findings suggest that the impedance of motility by antibodies targeting V. cholerae OSP contributes to protection against cholera.IMPORTANCE Cholera is a severe dehydrating illness of humans caused by Vibrio choleraeV. cholerae is a highly motile bacterium that has a single flagellum covered in lipopolysaccharide (LPS) displaying O-specific polysaccharide (OSP), and V. cholerae motility correlates with its ability to cause disease. The mechanisms of protection against cholera are not well understood; however, since V. cholerae is a noninvasive intestinal pathogen, it is likely that antibodies that bind the pathogen or its products in the intestinal lumen contribute to protection from infection. Here, we demonstrate that OSP-specific antibodies isolated from humans surviving cholera in Bangladesh inhibit V. cholerae motility and are associated with protection against challenge in a motility-dependent manner.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Cólera/inmunología , Antígenos O/inmunología , Vibrio cholerae/inmunología , Aglutinación , Animales , Animales Lactantes , Bangladesh , Cólera/microbiología , Humanos , Ratones , Vibrio cholerae/patogenicidad
20.
Radiology ; 251(3): 813-21, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19474377

RESUMEN

PURPOSE: To evaluate an author-developed normalization algorithm for quantitative imaging of optical molecular probes through blood and to assess, in the rat aorta after focal aortic injury, the feasibility of measuring protease activity by using this method. MATERIALS AND METHODS: This study was performed according to a protocol approved by the institutional animal care committee. A Monte Carlo simulation was used to determine the pair of near-infrared (NIR) dyes that was best suited for the normalization algorithm. The authors tested the correction method in vitro and in vivo by injecting free dye mixtures intramurally in the aortas of four rats. The potential clinical utility was then evaluated by applying the method to the endovascular measurement of protease activity in a rat model of focal aortic injury. RESULTS: When the Monte Carlo simulation was used in the normalization algorithm, it was predicted that the intensities of signals from two NIR dyes would vary +/-3% across 1 mm of blood compared with the intensity of the raw fluorochrome signal, which would vary +/-60%. This result was validated in vitro. Endovascular imaging of free dye collections revealed that clinically relevant, uncontrollable differences in the amount of blood intervening between the imaging catheter and the dye collection precipitated dramatic variations in raw NIR fluorescence. However, use of the correction method resolved these variations such that the measured signal intensity correlated well with the different dye concentrations in the different animals. Moreover, endovascular imaging of the focal aortic injury model enabled successful measurement of enzyme activity in the walls of the rat aortas. CONCLUSION: The authors implemented a correction method for quantitative real-time endovascular imaging of fluorescence that enables one to resolve the attenuating effects of blood on NIR signal.


Asunto(s)
Aorta/patología , Espectroscopía Infrarroja Corta/métodos , Algoritmos , Animales , Aorta/enzimología , Estudios de Factibilidad , Femenino , Colorantes Fluorescentes/administración & dosificación , Inflamación/enzimología , Inflamación/patología , Método de Montecarlo , Péptido Hidrolasas/metabolismo , Ratas , Ratas Sprague-Dawley , Espectroscopía Infrarroja Corta/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA