Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
2.
Mol Nutr Food Res ; 54(8): 1182-91, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20112302

RESUMEN

Epidemiological and animal model studies have suggested that high intake of heme, present in red meat, is associated with an increased risk of colon cancer. However, the mechanisms underlying this association are not clear. This study aimed to investigate whether heme induces DNA damage and cell proliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase (HO). We examined the effects of zinc protoporphyrin (ZnPP; a HO inhibitor) and catalase on DNA damage, cell proliferation, and IL-8 production induced by the addition of hemin (1-10 microM) to human colonic epithelial Caco-2 cells. DNA damage was determined with a comet assay, and cell proliferation was evaluated with 5-bromo-2'-deoxyuridine incorporation assay. Both ZnPP and exogenous catalase inhibited the hemin-induced DNA damage and cell hyperproliferation dose-dependently. IL-8 messenger RNA expression and IL-8 production in the epithelial cells increased following the hemin treatment, but the production was inhibited by ZnPP and catalase. These results indicate that hemin has genotoxic and hyperproliferative effects on Caco-2 cells by HO and hydrogen peroxide. The mechanism might explain why a high intake of heme is associated with increased risk of colon cancer.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/metabolismo , Daño del ADN/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo/toxicidad , Peróxido de Hidrógeno/metabolismo , Células CACO-2 , Catalasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/epidemiología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Carne/efectos adversos , Concentración Osmolar , Estrés Oxidativo/efectos de los fármacos , Protoporfirinas/farmacología , ARN Mensajero/metabolismo , Factores de Riesgo
3.
Inorg Chem ; 45(22): 8907-21, 2006 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17054350

RESUMEN

Novel mixed-ligand Ir(III) complexes, [Ir(L)(NwedgeC)X]n+ (L = N/\C/\N or N/\N/\N; X = Cl, Br, I, CN, CH3CN, or -CCPh; n = 0 or 1), were synthesized, where N/\CwedgeN = bis(N-methylbenzimidazolyl)benzene (Mebib) and bis(N-phenylbenzimidazolyl)benzene (Phbib), N/\N/\N = bis(N-methylbenzimidazolyl)pyridine (Mebip), and N/\C = phenylpyridine (ppy) derivatives. The X-ray crystal structures of [Ir(Phbib)(ppy)Cl] and [Ir(Mebib)(mppy)Cl] [mppy = 5-methyl-2-(2'-pyridyl)phenyl] indicate that the nitrogen atom of the ppy ligand is located trans to the coordinating carbon atom in Me- or Phbib, while the coordinating carbon atom in ppy occupies the trans position of Cl. [Ir(Mebip)(ppy)Cl]+ showed a quasireversible Ir(III/IV) oxidation wave at +1.05 V, while the Ir complexes, [Ir(Mebib)(ppy)Cl], were oxidized at +0.42 V versus Fc/Fc+. The introduction of an Ir-C bond in [Ir(Mebib)(ppy)Cl] induces a large potential shift of 0.63 V in a negative direction. Further, the oxidation potential of [Ir(Mebib)(Rppy)X] was altered by the substitution of R, R', and X groups. Compared to the oxidation potential, the first reduction potential revealed an almost constant value at -2.36 to -2.46 V for [Ir(L)(ppy)Cl] (L = Mebib and Phbib) and -1.52 V for [Ir(Mebip)(ppy)Cl. The UV-vis spectra of [Ir(Mebib)(R-ppy)X] show a clear singlet metal-to-ligand charge-transfer transition around 407 approximately 425 nm and a triplet metal-to-ligand charge-transfer transition at 498 approximately 523 nm. [Ir(Mebip)(ppy)Cl]+ emits at 610 nm with a luminescent quantum yield of Phi = 0.16 at room temperature. The phosphorescence of [Ir(Mebib)(ppy)X] was observed at 526 nm for X = CN and 555 nm for X = Cl with the high luminescent quantum yields, Phi = 0.77 approximately 0.86, at room temperature. [Ir(Phbib)(ppy)Cl] shows the emission at 559 nm with a luminescent quantum yield of Phi = 0.95, which is an unprecedentedly high value compared to those of other emissive metal complexes. Compared to the luminescent quantum yields of the Ir(ppy)2(L) derivatives and [Ir(Mebip)(ppy)Cl]+, the neutral Ir complexes, [Ir(L)(R-ppy)X] (L = Me- or Phbib), reveal very high quantum yields and large radiative rate constants (kr) ranging from 3.4 x 10(5) to 5.5 x 10(5) s(-1). The density functional theory calculation suggests that these Ir complexes possess dominantly metal-to-ligand charge-transfer and halide-to-ligand charge-transfer excited states. The mechanism for a high phosphorescence yield in [Ir(bib)(ppy)X] is discussed herein from the perspective of the theoretical consideration of radiative rate constants using perturbation theory and a one-center spin-orbit coupling approximation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA