Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ISME Commun ; 4(1): ycae059, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38770060

RESUMEN

Mobile genetic elements (MGEs), collectively referred to as the "mobilome", can have a significant impact on the fitness of microbial communities and therefore on ecological processes. Marine MGEs have mainly been associated with wide geographical and phylogenetic dispersal of adaptative traits. However, whether the structure of this mobilome exhibits deterministic patterns in the natural community is still an open question. The aim of this study was to characterize the structure of the conjugative mobilome in the ocean surface bacterioplankton by searching the publicly available marine metagenomes from the TARA Oceans survey, together with molecular markers, such as relaxases and type IV coupling proteins of the type IV secretion system (T4SS). The T4SS machinery was retrieved in more abundance than relaxases in the surface marine bacterioplankton. Moreover, among the identified MGEs, mobilizable elements were the most abundant, outnumbering self-conjugative sequences. Detection of a high number of incomplete T4SSs provides insight into possible strategies related to trans-acting activity between MGEs, and accessory functions of the T4SS (e.g. protein secretion), allowing the host to maintain a lower metabolic burden in the highly dynamic marine system. Additionally, the results demonstrate a wide geographical dispersion of MGEs throughout oceanic regions, while the Southern Ocean appears segregated from other regions. The marine mobilome also showed a high similarity of functions present in known plasmid databases. Moreover, cargo genes were mostly related to DNA processing, but scarcely associated with antibiotic resistance. Finally, within the MGEs, integrative and conjugative elements showed wider marine geographic dispersion than plasmids.

2.
Microbiol Spectr ; : e0024923, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37754764

RESUMEN

Temperature, pH, and hydrochemistry of terrestrial hot springs play a critical role in shaping thermal microbial communities. However, the interactions of biotic and abiotic factors at this terrestrial-aquatic interface are still not well understood on a global scale, and the question of how underground events influence microbial communities remains open. To answer this, 11 new samples obtained from the El Tatio geothermal field were analyzed by 16S rRNA amplicon sequencing (V4 region), along with 191 samples from previous publications obtained from the Taupo Volcanic Zone, the Yellowstone Plateau Volcanic Field, and the Eastern Tibetan Plateau, with their temperature, pH, and major ion concentration. Microbial alpha diversity was lower in acid-sulfate waters, and no significant correlations were found with temperature. However, moderate correlations were observed between chemical parameters such as pH (mostly constrained to temperatures below 70°C), SO4 2- and abundances of members of the phyla Armatimonadota, Deinococcota, Chloroflexota, Campilobacterota, and Thermoplasmatota. pH and SO4 2- gradients were explained by phase separation of sulfur-rich hydrothermal fluids and oxidation of reduced sulfur in the steam phase, which were identified as key processes shaping these communities. Ordination and permutational analysis of variance showed that temperature, pH, and major element hydrochemistry explain only 24% of the microbial community structure. Therefore, most of the variance remained unexplained, suggesting that other environmental or biotic factors are also involved and highlighting the environmental complexity of the ecosystem and its great potential to test niche theory ecological associated questions. IMPORTANCE This is the first approach to investigate whether geothermal processes could have an influence on the ecology of thermal microbial communities on a global scale. In addition to temperature and pH, microbial communities are structured by sulfate concentrations, which depends on the tectono-magmatic settings (such as the depth of magmatic chambers) and the local settings (such as the availability of a confining layer separating NaCl waters from steam after phase separation) and the possibility of mixing with more diluted fluids. Comparison of microbial communities from different geothermal areas by homogeneous sequence processing showed that no significant geographic distance decay was detected on the microbial communities according to Bray-Curtis, Jaccard, unweighted, and weighted Unifrac similarity/dissimilarity indices. Instead, an ancient potential divergence in the same taxonomic groups is suggested between globally distant thermal zones.

3.
Front Microbiol ; 13: 1069452, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532491

RESUMEN

The Cas1 protein is essential for the functioning of CRISPR-Cas adaptive systems. However, despite the high prevalence of CRISPR-Cas systems in thermophilic microorganisms, few studies have investigated the occurrence and diversity of Cas1 across hot spring microbial communities. Phylogenomic analysis of 2,150 Cas1 sequences recovered from 48 metagenomes representing hot springs (42-80°C, pH 6-9) from three continents, revealed similar ecological diversity of Cas1 and 16S rRNA associated with geographic location. Furthermore, phylogenetic analysis of the Cas1 sequences exposed a broad taxonomic distribution in thermophilic bacteria, with new clades of Cas1 homologs branching at the root of the tree or at the root of known clades harboring reference Cas1 types. Additionally, a new family of casposases was identified from hot springs, which further completes the evolutionary landscape of the Cas1 superfamily. This ecological study contributes new Cas1 sequences from known and novel locations worldwide, mainly focusing on under-sampled hot spring microbial mat taxa. Results herein show that circumneutral hot springs are environments harboring high diversity and novelty related to adaptive immunity systems.

4.
Microorganisms ; 10(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35744658

RESUMEN

Although crucial for the addition of new nitrogen in marine ecosystems, dinitrogen (N2) fixation remains an understudied process, especially under dark conditions and in polar coastal areas, such as the West Antarctic Peninsula (WAP). New measurements of light and dark N2 fixation rates in parallel with carbon (C) fixation rates, as well as analysis of the genetic marker nifH for diazotrophic organisms, were conducted during the late summer in the coastal waters of Chile Bay, South Shetland Islands, WAP. During six late summers (February 2013 to 2019), Chile Bay was characterized by high NO3− concentrations (~20 µM) and an NH4+ content that remained stable near 0.5 µM. The N:P ratio was approximately 14.1, thus close to that of the Redfield ratio (16:1). The presence of Cluster I and Cluster III nifH gene sequences closely related to Alpha-, Delta- and, to a lesser extent, Gammaproteobacteria, suggests that chemosynthetic and heterotrophic bacteria are primarily responsible for N2 fixation in the bay. Photosynthetic carbon assimilation ranged from 51.18 to 1471 nmol C L−1 d−1, while dark chemosynthesis ranged from 9.24 to 805 nmol C L−1 d−1. N2 fixation rates were higher under dark conditions (up to 45.40 nmol N L−1 d−1) than under light conditions (up to 7.70 nmol N L−1 d−1), possibly contributing more than 37% to new nitrogen-based production (≥2.5 g N m−2 y−1). Of all the environmental factors measured, only PO43- exhibited a significant correlation with C and N2 rates, being negatively correlated (p < 0.05) with dark chemosynthesis and N2 fixation under the light condition, revealing the importance of the N:P ratio for these processes in Chile Bay. This significant contribution of N2 fixation expands the ubiquity and biological potential of these marine chemosynthetic diazotrophs. As such, this process should be considered along with the entire N cycle when further reviewing highly productive Antarctic coastal waters and the diazotrophic potential of the global marine ecosystem.

5.
mSphere ; 6(4): e0052521, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34406852

RESUMEN

Microbial proton-pumping rhodopsins are considered the simplest strategy among phototrophs to conserve energy from light. Proteorhodopsins are the most studied rhodopsins thus far because of their ubiquitous presence in the ocean, except in Antarctica, where they remain understudied. We analyzed proteorhodopsin abundance and transcriptional activity in the Western Antarctic coastal seawaters. Combining quantitative PCR (qPCR) and metagenomics, the relative abundance of proteorhodopsin-bearing bacteria accounted on average for 17, 3.5, and 29.7% of the bacterial community in Chile Bay (South Shetland Islands) during 2014, 2016, and 2017 summer-autumn, respectively. The abundance of proteorhodopsin-bearing bacteria changed in relation to environmental conditions such as chlorophyll a and temperature. Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were the main bacteria that transcribed the proteorhodopsin gene during day and night. Although green light-absorbing proteorhodopsin genes were more abundant than blue-absorbing ones, the latter were transcribed more intensely, resulting in >50% of the proteorhodopsin transcripts during the day and night. Flavobacteriia were the most abundant proteorhodopsin-bearing bacteria in the metagenomes; however, Alphaproteobacteria and Gammaproteobacteria were more represented in the metatranscriptomes, with qPCR quantification suggesting the dominance of the active SAR11 clade. Our results show that proteorhodopsin-bearing bacteria are prevalent in Antarctic coastal waters in late austral summer and early autumn, and their ecological relevance needs to be elucidated to better understand how sunlight energy is used in this marine ecosystem. IMPORTANCE Proteorhodopsin-bearing microorganisms in the Southern Ocean have been overlooked since their discovery in 2000. The present study identify taxonomy and quantify the relative abundance of proteorhodopsin-bearing bacteria and proteorhodopsin gene transcription in the West Antarctic Peninsula's coastal waters. This information is crucial to understand better how sunlight enters this marine environment through alternative ways unrelated to chlorophyll-based strategies. The relative abundance of proteorhodopsin-bearing bacteria seems to be related to environmental parameters (e.g., chlorophyll a, temperature) that change yearly at the coastal water of the West Antarctic Peninsula during the austral late summers and early autumns. Proteorhodopsin-bearing bacteria from Antarctic coastal waters are potentially able to exploit both the green and blue spectrum of sunlight and are a prevalent group during the summer in this polar environment.


Asunto(s)
Metagenómica/métodos , Microbiota/genética , Procesos Fototróficos , Rodopsinas Microbianas/genética , Agua de Mar/microbiología , Alphaproteobacteria/química , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Regiones Antárticas , Ecosistema , Flavobacteriaceae/química , Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , Filogenia , Rodopsina/metabolismo , Rodopsinas Microbianas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA