Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Anal Biochem ; 428(2): 126-36, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22743307

RESUMEN

Poly(ADP-ribose) (pADPr) is a large, structurally complex polymer of repeating ADP-ribose units. It is biosynthesized from NAD⁺ by poly(ADP-ribose) polymerases (PARPs) and degraded to ADP-ribose by poly(ADP-ribose) glycohydrolase. pADPr is involved in many cellular processes and exerts biological function through covalent modification and noncovalent binding to specific proteins. Very little is known about molecular recognition and structure-activity relationships for noncovalent interaction between pADPr and its binding proteins, in part because of lack of access to the polymer on a large scale and to units of defined lengths. We prepared polydisperse pADPr from PARP1 and tankyrase 1 at the hundreds of milligram scale by optimizing enzymatic synthesis and scaling up chromatographic purification methods. We developed and calibrated an anion exchange chromatography method to assign pADPr size and scaled it up to purify defined length polymers on the milligram scale. Furthermore, we present a pADPr profiling method to characterize the polydispersity of pADPr produced by PARPs under different reaction conditions and find that substrate proteins affect the pADPr size distribution. These methods will facilitate structural and biochemical studies of pADPr and its binding proteins.


Asunto(s)
Bioquímica/métodos , Biopolímeros/biosíntesis , Poli Adenosina Difosfato Ribosa/biosíntesis , Animales , Biocatálisis , Biopolímeros/química , Calibración , Bovinos , Fraccionamiento Químico , Cromatografía Líquida de Alta Presión , Glicósido Hidrolasas/química , Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Humanos , Poli Adenosina Difosfato Ribosa/química , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Polimerizacion , Estructura Terciaria de Proteína , Tanquirasas/química , Tanquirasas/aislamiento & purificación , Tanquirasas/metabolismo
2.
Chem Biol ; 15(4): 343-53, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18420141

RESUMEN

The trace amine-associated receptor 1 (TAAR(1)) is a biogenic amine G protein-coupled receptor (GPCR) that is potently activated by 3-iodothyronamine (1, T(1)AM) in vitro. Compound 1 is an endogenous derivative of the thyroid hormone thyroxine which rapidly induces hypothermia, anergia, and bradycardia when administered to mice. To explore the role of TAAR(1) in mediating the effects of 1, we rationally designed and synthesized rat TAAR(1) superagonists and lead antagonists using the rotamer toggle switch model of aminergic GPCR activation. The functional activity of a ligand is proposed to be correlated to its probable interactions with the rotamer switch residues; agonists allow the rotamer switch residues to toggle to their active conformation, whereas antagonists interfere with this conformational transition. These agonist and antagonist design principles provide a conceptual model for understanding the relationship between the molecular structure of a drug and its pharmacological properties.


Asunto(s)
Diseño de Fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Animales , Unión Proteica , Conformación Proteica/efectos de los fármacos , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad , Tironinas/química , Tironinas/metabolismo , Tironinas/farmacología
3.
Bioorg Med Chem Lett ; 18(22): 5920-2, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18752950

RESUMEN

Amiodarone (Cordarone, Wyeth-Ayerst Pharmaceuticals) is a clinically available drug used to treat a wide variety of cardiac arrhythmias. We report here the synthesis and characterization of a panel of potential amiodarone metabolites that have significant structural similarity to thyroid hormone and its metabolites the iodothyronamines. Several of these amiodarone derivatives act as specific agonists of the G protein-coupled receptor (GPCR) trace amine-associated receptor 1 (TAAR(1)). This result demonstrates a novel molecular target for amiodarone derivatives with potential clinical significance.


Asunto(s)
Amiodarona/síntesis química , Amiodarona/farmacología , Antiarrítmicos/farmacología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Amiodarona/química , Animales , Arritmias Cardíacas/tratamiento farmacológico , Técnicas Químicas Combinatorias , Humanos , Ratones , Estructura Molecular , Ratas
4.
J Med Chem ; 50(12): 2787-98, 2007 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-17497842

RESUMEN

3-iodothyronamine (1, T1AM) is a naturally occurring derivative of thyroid hormone that can potently activate the orphan G protein-coupled receptor (GPCR) known as the trace amine-associated receptor 1 (TAAR1). We have previously found that modifying the outer ring of the phenoxyphenethylamine core scaffold of 1 can improve potency and provide potent agonists. In this study, we explored the tolerance of rat and mouse TAAR1 (rTAAR1 and mTAAR1) for structural modifications in the ethylamine portion of 1. We found that incorporating unsaturated hydrocarbon substituents and polar, hydrogen-bond-accepting groups were beneficial for rTAAR1 and mTAAR1, respectively, providing compounds that were equipotent or more potent than 1. Additionally, we have discovered that a naphthyl group is an excellent isosteric replacement for the iodophenyl ring of 1.


Asunto(s)
Etilaminas/síntesis química , Receptores Acoplados a Proteínas G/agonistas , Tironinas/síntesis química , Animales , Línea Celular , AMP Cíclico/biosíntesis , Etilaminas/química , Etilaminas/farmacología , Humanos , Enlace de Hidrógeno , Ratones , Naftalenos/síntesis química , Naftalenos/química , Naftalenos/farmacología , Ratas , Relación Estructura-Actividad , Tironinas/química , Tironinas/farmacología
5.
Chem Biol ; 22(4): 446-452, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25865309

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR), an essential post-translational modification whose function is important in many cellular processes including DNA damage signaling, cell death, and inflammation. All known PAR biology is intracellular, but we suspected it might also play a role in cell-to-cell communication during inflammation. We found that PAR activated cytokine release in human and mouse macrophages, a hallmark of innate immune activation, and determined structure-activity relationships. PAR was rapidly internalized by murine macrophages, while the monomer, ADP-ribose, was not. Inhibitors of Toll-like receptor 2 (TLR2) and TLR4 signaling blocked macrophage responses to PAR, and PAR induced TLR2 and TLR4 signaling in reporter cell lines suggesting it was recognized by these TLRs, much like bacterial pathogens. We propose that PAR acts as an extracellular damage associated molecular pattern that drives inflammatory signaling.


Asunto(s)
Poli Adenosina Difosfato Ribosa/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Citocinas/metabolismo , Dimerización , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Microscopía Confocal , Poli Adenosina Difosfato Ribosa/química , Relación Estructura-Actividad , Receptor Toll-Like 2/antagonistas & inhibidores , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Nat Commun ; 4: 2164, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23917065

RESUMEN

Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Tetrahymena thermophila/enzimología , Biocatálisis , Secuencia Conservada , Cristalografía por Rayos X , Ácido Glutámico/metabolismo , Glicósido Hidrolasas/química , Humanos , Hidrólisis , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis , Poli Adenosina Difosfato Ribosa/química , Especificidad por Sustrato
7.
Curr Biol ; 20(22): 2040-5, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21055946

RESUMEN

Current models for cleavage plane determination propose that metaphase spindles are positioned and oriented by interactions of their astral microtubules with the cellular cortex, followed by cleavage in the plane of the metaphase plate [1, 2]. We show that in early frog and fish embryos, where cells are unusually large, astral microtubules in metaphase are too short to position and orient the spindle. Rather, the preceding interphase aster centers and orients a pair of centrosomes prior to nuclear envelope breakdown, and the spindle assembles between these prepositioned centrosomes. Interphase asters center and orient centrosomes with dynein-mediated pulling forces. These forces act before astral microtubules contact the cortex; thus, dynein must pull from sites in the cytoplasm, not the cell cortex as is usually proposed for smaller cells. Aster shape is determined by interactions of the expanding periphery with the cell cortex or with an interaction zone that forms between sister-asters in telophase. We propose a model to explain cleavage plane geometry in which the length of astral microtubules is limited by interaction with these boundaries, causing length asymmetries. Dynein anchored in the cytoplasm then generates length-dependent pulling forces, which move and orient centrosomes.


Asunto(s)
División Celular , Embrión no Mamífero/citología , Modelos Biológicos , Animales , Centrosoma/ultraestructura , Embrión no Mamífero/ultraestructura , Desarrollo Embrionario , Femenino , Fertilización , Masculino , Metafase , Microtúbulos/ultraestructura , Espermatozoides/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Xenopus laevis , Pez Cebra/embriología
8.
ACS Chem Biol ; 4(3): 209-20, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19256523

RESUMEN

The trace amine-associated receptor 1 (TAAR(1)) is an aminergic G protein-coupled receptor (GPCR) potently activated by 3-iodothyronamine (1), an endogenous derivative of thyroid hormone. Structure-activity relationship studies on 1 and related agonists showed that the rat and mouse species of TAAR(1) accommodated structural modifications and functional groups on the ethylamine portion and the biaryl ether moiety of the molecule. However, the two receptors clearly exhibited distinct, species-specific ligand preferences despite being remarkably similar with 93% sequence similarity. In this study, we generated single and double mutants of rat and mouse TAAR(1) to probe the molecular recognition of agonists and the underlying basis for the ligand selectivity of rat and mouse TAAR(1). Key, nonconserved specificity determinant residues in transmembranes helices 4 and 7 within the ligand binding site appear to be the primary source of a number of the observed ligand preferences. Residue 7.39 in transmembrane 7 dictated the preference for a beta-phenyl ring, while residue 4.56 in transmembrane 4 was partially responsible for the lower potency of 1 and tyramine for the mouse receptor. Additionally, 1 and tyramine were found to have the same binding mode in rat TAAR(1) despite structure-activity relationship data suggesting the possibility of each molecule having different binding orientations. These findings provide valuable insights into the critical binding site residues involved in the ligand-receptor interaction that can influence compound selectivity and functional activity of aminergic GPCRs.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Tironinas/farmacología , Secuencia de Aminoácidos , Animales , Humanos , Ligandos , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/agonistas , Proteínas Mutantes/química , Proteínas Mutantes/genética , Estructura Secundaria de Proteína , Ratas , Receptores Acoplados a Proteínas G/genética , Alineación de Secuencia , Relación Estructura-Actividad , Tironinas/química , Tiramina/metabolismo , Tiramina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA