Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(20): 3705-3719.e14, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179667

RESUMEN

The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteroides , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Meropenem , Ratones , Mucinas/metabolismo , Moco/metabolismo , Polisacáridos/metabolismo , Xilosa
2.
Mol Cell ; 81(13): 2722-2735.e9, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077757

RESUMEN

Lipid droplets are important for cancer cell growth and survival. However, the mechanism underlying the initiation of lipid droplet lipolysis is not well understood. We demonstrate here that glucose deprivation induces the binding of choline kinase (CHK) α2 to lipid droplets, which is sequentially mediated by AMPK-dependent CHKα2 S279 phosphorylation and KAT5-dependent CHKα2 K247 acetylation. Importantly, CHKα2 with altered catalytic domain conformation functions as a protein kinase and phosphorylates PLIN2 at Y232 and PLIN3 at Y251. The phosphorylated PLIN2/3 dissociate from lipid droplets and are degraded by Hsc70-mediated autophagy, thereby promoting lipid droplet lipolysis, fatty acid oxidation, and brain tumor growth. In addition, levels of CHKα2 S279 phosphorylation, CHKα2 K247 acetylation, and PLIN2/3 phosphorylation are positively correlated with one another in human glioblastoma specimens and are associated with poor prognosis in glioblastoma patients. These findings underscore the role of CHKα2 as a protein kinase in lipolysis and glioblastoma development.


Asunto(s)
Colina Quinasa/metabolismo , Glioblastoma/enzimología , Gotas Lipídicas/enzimología , Lipólisis , Proteínas de Neoplasias/metabolismo , Proteínas Quinasas/metabolismo , Acetilación , Línea Celular Tumoral , Colina Quinasa/genética , Glioblastoma/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas Quinasas/genética
3.
Genes Dev ; 35(19-20): 1327-1332, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34531315

RESUMEN

Activating mutations in KRAS (KRAS*) are present in nearly all pancreatic ductal adenocarcinoma (PDAC) cases and critical for tumor maintenance. By using an inducible KRAS* PDAC mouse model, we identified a deubiquitinase USP21-driven resistance mechanism to anti-KRAS* therapy. USP21 promotes KRAS*-independent tumor growth via its regulation of MARK3-induced macropinocytosis, which serves to maintain intracellular amino acid levels for anabolic growth. The USP21-mediated KRAS* bypass, coupled with the frequent amplification of USP21 in human PDAC tumors, encourages the assessment of USP21 as a novel drug target as well as a potential parameter that may affect responsiveness to emergent anti-KRAS* therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Enzimas Desubicuitinizantes/metabolismo , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ubiquitina Tiolesterasa
4.
Mol Cell ; 76(3): 516-527.e7, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31492635

RESUMEN

The PTEN tumor suppressor is frequently mutated or deleted in cancer and regulates glucose metabolism through the PI3K-AKT pathway. However, whether PTEN directly regulates glycolysis in tumor cells is unclear. We demonstrate here that PTEN directly interacts with phosphoglycerate kinase 1 (PGK1). PGK1 functions not only as a glycolytic enzyme but also as a protein kinase intermolecularly autophosphorylating itself at Y324 for activation. The protein phosphatase activity of PTEN dephosphorylates and inhibits autophosphorylated PGK1, thereby inhibiting glycolysis, ATP production, and brain tumor cell proliferation. In addition, knockin expression of a PGK1 Y324F mutant inhibits brain tumor formation. Analyses of human glioblastoma specimens reveals that PGK1 Y324 phosphorylation levels inversely correlate with PTEN expression status and are positively associated with poor prognosis in glioblastoma patients. This work highlights the instrumental role of PGK1 autophosphorylation in its activation and PTEN protein phosphatase activity in governing glycolysis and tumorigenesis.


Asunto(s)
Neoplasias Encefálicas/enzimología , Glioblastoma/enzimología , Glucosa/metabolismo , Glucólisis , Fosfohidrolasa PTEN/metabolismo , Fosfoglicerato Quinasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Glioblastoma/genética , Glioblastoma/patología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfohidrolasa PTEN/genética , Fosfoglicerato Quinasa/genética , Fosforilación , Pronóstico , Transducción de Señal , Factores de Tiempo , Carga Tumoral , Tirosina
5.
Mol Cell ; 70(2): 197-210.e7, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677490

RESUMEN

EGFR activates phosphatidylinositide 3-kinase (PI3K), but the mechanism underlying this activation is not completely understood. We demonstrated here that EGFR activation resulted in lysine acetyltransferase 5 (KAT5)-mediated K395 acetylation of the platelet isoform of phosphofructokinase 1 (PFKP) and subsequent translocation of PFKP to the plasma membrane, where the PFKP was phosphorylated at Y64 by EGFR. Phosphorylated PFKP binds to the N-terminal SH2 domain of p85α, which is distinct from binding of Gab1 to the C-terminal SH2 domain of p85α, and recruited p85α to the plasma membrane resulting in PI3K activation. PI3K-dependent AKT activation results in enhanced phosphofructokinase 2 (PFK2) phosphorylation and production of fructose-2,6-bisphosphate, which in turn promotes PFK1 activation. PFKP Y64 phosphorylation-enhanced PI3K/AKT-dependent PFK1 activation and GLUT1 expression promoted the Warburg effect, tumor cell proliferation, and brain tumorigenesis. These findings underscore the instrumental role of PFKP in PI3K activation and enhanced glycolysis through PI3K/AKT-dependent positive-feedback regulation.


Asunto(s)
Neoplasias Encefálicas/enzimología , Glioblastoma/enzimología , Glucólisis , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfofructoquinasa-1 Tipo C/metabolismo , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ia , Activación Enzimática , Receptores ErbB/genética , Receptores ErbB/metabolismo , Retroalimentación Fisiológica , Fructosadifosfatos/metabolismo , Glioblastoma/genética , Glioblastoma/patología , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Lisina Acetiltransferasa 5/genética , Lisina Acetiltransferasa 5/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/genética , Fosfofructoquinasa-1 Tipo C/genética , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Dominios Homologos src
6.
PLoS Pathog ; 19(1): e1011116, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689489

RESUMEN

Bat coronavirus RaTG13 shares about 96.2% nucleotide sequence identity with that of SARS-CoV-2 and uses human and Rhinolophus affinis (Ra) angiotensin-converting enzyme 2 (ACE2) as entry receptors. Whether there are bat species other than R. affinis susceptible to RaTG13 infection remains elusive. Here, we show that, among 18 different bat ACE2s tested, only RaACE2 is highly susceptible to transduction by RaTG13 S pseudovirions, indicating that the bat species harboring RaTG13 might be very limited. RaACE2 has seven polymorphic variants, RA-01 to RA-07, and they show different susceptibilities to RaTG13 S pseudovirions transduction. Sequence and mutagenesis analyses reveal that residues 34, 38, and 83 in RaACE2 might play critical roles in interaction with the RaTG13 S protein. Of note, RaACE2 polymorphisms have minimal effect on S proteins of SARS-CoV-2 and several SARS-CoV-2 related CoVs (SC2r-CoVs) including BANAL-20-52 and BANAL-20-236 in terms of binding, membrane fusion, and pseudovirus entry. Further mutagenesis analyses identify residues 501 and 505 in S proteins critical for the recognition of different RaACE2 variants and pangolin ACE2 (pACE2), indicating that RaTG13 might have not been well adapted to R. affinis bats. While single D501N and H505Y changes in RaTG13 S protein significantly enhance the infectivity and minimize the difference in susceptibility among different RaACE2 variants, an N501D substitution in SARS-CoV-2 S protein displays marked disparity in transduction efficiencies among RaACE2 variants with a significant reduction in infectivity on several RaACE2 variants. Finally, a T372A substitution in RaTG13 S protein not only significantly increases infectivity on all RaACE2 variants, but also markedly enhances entry on several bat ACE2s including R. sinicus YN, R. pearsonii, and R. ferrumeiqunum. However, the T372A mutant is about 4-fold more sensitive to neutralizing sera from mice immunized with BANAL-20-52 S, suggesting that the better immune evasion ability of T372 over A372 might contribute to the natural selective advantage of T372 over A372 among bat CoVs. Together, our study aids a better understanding of coronavirus entry, vaccine design, and evolution.


Asunto(s)
COVID-19 , Quirópteros , Animales , Ratones , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Hepatology ; 79(2): 425-437, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611260

RESUMEN

BACKGROUND AND AIMS: The predominantly progressive, indeterminate, and predominantly regressive (P-I-R) classification extends beyond staging and provides information on dynamic changes of liver fibrosis. However, the prognostic implication of P-I-R classification is not elucidated. Therefore, in the present research, we investigated the utility of P-I-R classification in predicting the on-treatment clinical outcomes. APPROACH AND RESULTS: In an extension study on a randomized controlled trial, we originally enrolled 1000 patients with chronic hepatitis B and biopsy-proven histological significant fibrosis, and treated them for more than 7 years with entecavir-based therapy. Among the 727 patients with a second biopsy at treatment week 72, we compared P-I-R classification and Ishak score changes in 646 patients with adequate liver sections for the histological evaluation. Progressive, indeterminate, and regressive cases were observed in 70%, 17%, and 13% of patients before treatments and 20%, 14%, and 64% after 72-week treatment, respectively, which could further differentiate the histological outcomes of patients with stable Ishak scores. The 7-year cumulative incidence of HCC was 1.5% for the regressive cases, 4.3% for the indeterminate cases, and 22.8% for the progressive cases ( p <0.001). After adjusting for age, treatment regimen, platelet counts, cirrhosis, Ishak fibrosis score changes, and Laennec staging, the posttreatment progressive had a HR of 17.77 (vs. posttreatment regressive; 95% CI: 5.55-56.88) for the incidence of liver-related events (decompensation, HCC, and death/liver transplantation). CONCLUSIONS: The P-I-R classification can be a meaningful complement to the Ishak fibrosis score not only in evaluating the histological changes but also in predicting the clinical outcomes.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Antivirales/uso terapéutico , Neoplasias Hepáticas/patología , Cirrosis Hepática/patología , Hígado/patología , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/patología , Fibrosis , Biopsia/efectos adversos
8.
J Biol Chem ; 299(9): 105185, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37611830

RESUMEN

A substantial body of evidence has established the contributions of both mitochondrial dynamics and lipid metabolism to the pathogenesis of diabetic kidney disease (DKD). However, the precise interplay between these two key metabolic regulators of DKD is not fully understood. Here, we uncover a link between mitochondrial dynamics and lipid metabolism by investigating the role of carbohydrate-response element-binding protein (ChREBP), a glucose-responsive transcription factor and a master regulator of lipogenesis, in kidney podocytes. We find that inducible podocyte-specific knockdown of ChREBP in diabetic db/db mice improves key biochemical and histological features of DKD in addition to significantly reducing mitochondrial fragmentation. Because of the critical role of ChREBP in lipid metabolism, we interrogated whether and how mitochondrial lipidomes play a role in ChREBP-mediated mitochondrial fission. Our findings suggest a key role for a family of ether phospholipids in ChREBP-induced mitochondrial remodeling. We find that overexpression of glyceronephosphate O-acyltransferase, a critical enzyme in the biosynthesis of plasmalogens, reverses the protective phenotype of ChREBP deficiency on mitochondrial fragmentation. Finally, our data also points to Gnpat as a direct transcriptional target of ChREBP. Taken together, our results uncover a distinct mitochondrial lipid signature as the link between ChREBP-induced mitochondrial dynamics and progression of DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Ratones , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/metabolismo , Regulación de la Expresión Génica , Riñón/metabolismo , Lipidómica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Crit Rev Eukaryot Gene Expr ; 34(4): 33-44, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505871

RESUMEN

Acute myeloid leukemia (AML) is a highly heterogeneous disease. Exploring the pathogenesis of AML is still an important topic in the treatment of AML. The expression levels of miR-26b-5p and USP48 were measured by qRT-PCR. The expression levels of related proteins were detected by Western blot. Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry, respectively. Coimmunoprecipitation was used to examine the interaction between USP48 and Wnt5a. Bioinformatics analysis showed that high levels of miR-26b-5p and low levels of USP48 were associated with poor prognosis in AML. miR-26b-5p can negatively regulate the expression of USP48. Downregulation of miR-26b-5p inhibited EMT, cell viability and proliferation of AML cells and accelerated apoptosis. Furthermore, the influence of miR-26b-5p inhibition and USP48 knockdown on AML progression could be reversed by a Wnt/ß-catenin signaling pathway inhibitor. This study revealed that miR-26b-5p regulates AML progression, possibly by targeting the USP48-mediated Wnt/ß-catenin molecular axis to affect AML cell biological behavior.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , Western Blotting , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proliferación Celular/genética , Línea Celular Tumoral , Apoptosis/genética , Proteasas Ubiquitina-Específicas/metabolismo
10.
Small ; 20(8): e2304082, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37767608

RESUMEN

Bioenergetic deficits are known to be significant contributors to neurodegenerative diseases. Nevertheless, identifying safe and effective means to address intracellular bioenergetic deficits remains a significant challenge. This work provides mechanistic insights into the energy metabolism-regulating function of colloidal Au nanocrystals, referred to as CNM-Au8, that are synthesized electrochemically in the absence of surface-capping organic ligands. When neurons are subjected to excitotoxic stressors or toxic peptides, treatment of neurons with CNM-Au8 results in dose-dependent neuronal survival and neurite network preservation across multiple neuronal subtypes. CNM-Au8 efficiently catalyzes the conversion of an energetic cofactor, nicotinamide adenine dinucleotide hydride (NADH), into its oxidized counterpart (NAD+ ), which promotes bioenergy production by regulating the intracellular level of adenosine triphosphate. Detailed kinetic measurements reveal that CNM-Au8-catalyzed NADH oxidation obeys Michaelis-Menten kinetics and exhibits pH-dependent kinetic profiles. Photoexcited charge carriers and photothermal effect, which result from optical excitations and decay of the plasmonic electron oscillations or the interband electronic transitions in CNM-Au8, are further harnessed as unique leverages to modulate reaction kinetics. As exemplified by this work, Au nanocrystals with deliberately tailored structures and surfactant-free clean surfaces hold great promise for developing next-generation therapeutic agents for neurodegenerative diseases.


Asunto(s)
NAD , Enfermedades Neurodegenerativas , Humanos , NAD/química , Oro/química , Oxidación-Reducción
11.
PLoS Pathog ; 18(5): e1010534, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35613180

RESUMEN

The emerging "super fungus" Candida auris has become an important threat to human health due to its pandrug resistance and high lethality. Therefore, the development of novel antimicrobial strategy is essential. Antimicrobial photodynamic therapy (aPDT) has excellent performance in clinical applications. However, the relevant study on antifungal activity and the mechanism involved against C. auris remains scarce. Herein, a recyclable and biodegradable polylactic acid-hypocrellin A (PLA-HA) nanofibrous membrane is newly developed. In vitro PLA-HA-aPDT could significantly reduce the survival rate of C. auris plankton and its biofilms, and the fungicidal effect of the membrane is still significant after four repeated uses. Simultaneously, PLA-HA exhibits good biocompatibility and low hemolysis. In vivo experiments show that PLA-HA-aPDT can promote C. auris-infected wound healing, reduce inflammatory response, and without obvious toxic side-effects. Further results reveal that PLA-HA-aPDT could increase endogenous reactive oxygen species (ROS) levels, leading to mitochondrial dysfunction, release of cytochrome C, activation of metacaspase, and nuclear fragmentation, thereby triggering apoptosis of C. auris. Compared with HA, PLA-HA shows stronger controllability and reusability, which can greatly improve the utilization efficiency of HA alone. Taken together, the efficacy, safety and antifungal activity make PLA-HA-aPDT a highly promising antifungal candidate for skin or mucous membrane C. auris infection.


Asunto(s)
Candida , Nanofibras , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida auris , Humanos , Pruebas de Sensibilidad Microbiana , Poliésteres/farmacología
12.
Circ Res ; 131(1): 91-105, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35574856

RESUMEN

BACKGROUND: Cellular redox control is maintained by generation of reactive oxygen/nitrogen species balanced by activation of antioxidative pathways. Disruption of redox balance leads to oxidative stress, a central causative event in numerous diseases including heart failure. Redox control in the heart exposed to hemodynamic stress, however, remains to be fully elucidated. METHODS: Pressure overload was triggered by transverse aortic constriction in mice. Transcriptomic and metabolomic regulations were evaluated by RNA-sequencing and metabolomics, respectively. Stable isotope tracer labeling experiments were conducted to determine metabolic flux in vitro. Neonatal rat ventricular myocytes and H9c2 cells were used to examine molecular mechanisms. RESULTS: We show that production of cardiomyocyte NADPH, a key factor in redox regulation, is decreased in pressure overload-induced heart failure. As a consequence, the level of reduced glutathione is downregulated, a change associated with fibrosis and cardiomyopathy. We report that the pentose phosphate pathway and mitochondrial serine/glycine/folate metabolic signaling, 2 NADPH-generating pathways in the cytosol and mitochondria, respectively, are induced by transverse aortic constriction. We identify ATF4 (activating transcription factor 4) as an upstream transcription factor controlling the expression of multiple enzymes in these 2 pathways. Consistently, joint pathway analysis of transcriptomic and metabolomic data reveal that ATF4 preferably controls oxidative stress and redox-related pathways. Overexpression of ATF4 in neonatal rat ventricular myocytes increases NADPH-producing enzymes' whereas silencing of ATF4 decreases their expression. Further, stable isotope tracer experiments reveal that ATF4 overexpression augments metabolic flux within these 2 pathways. In vivo, cardiomyocyte-specific deletion of ATF4 exacerbates cardiomyopathy in the setting of transverse aortic constriction and accelerates heart failure development, attributable, at least in part, to an inability to increase the expression of NADPH-generating enzymes. CONCLUSIONS: Our findings reveal that ATF4 plays a critical role in the heart under conditions of hemodynamic stress by governing both cytosolic and mitochondrial production of NADPH.


Asunto(s)
Insuficiencia Cardíaca , Estrés Oxidativo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Insuficiencia Cardíaca/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , NADP/metabolismo , Estrés Oxidativo/fisiología , Ratas , Especies Reactivas de Oxígeno/metabolismo
13.
Biomacromolecules ; 25(4): 2587-2596, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38527924

RESUMEN

In response to increasing antibiotic resistance and the pressing demand for safer infected wound care, probiotics have emerged as promising bioactive agents. To address the challenges associated with the safe and efficient application of probiotics, this study successfully loaded metabolites from Lacticaseibacillus rhamnosus GG (LGG) into a gelatin cross-linked macromolecular network by an in situ blending and photopolymerization method. The obtained LM-GelMA possesses injectability and autonomous healing capabilities. Importantly, the incorporation of LGG metabolites endows LM-GelMA with excellent antibacterial properties against Staphylococcus aureus and Escherichia coli, while maintaining good biocompatibility. In vivo assessments revealed that LM-GelMA can accelerate wound healing by mitigating infections induced by pathogenic bacteria. This is accompanied by a reduction in the expression of key proinflammatory cytokines such as TNF-α, IL-6, VEGFR2, and TGF-ß, leading to increased re-epithelialization and collagen formation. Moreover, microbiological analysis confirmed that LM-GelMA can modulate the abundance of beneficial wound microbiota at family and genus levels. This study provides a facile strategy and insights into the functional design of hydrogels from the perspective of wound microenvironment regulation.


Asunto(s)
Lacticaseibacillus rhamnosus , Cicatrización de Heridas , Antibacterianos/farmacología , Citocinas , Escherichia coli , Hidrogeles/farmacología
14.
Cladistics ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016633

RESUMEN

Tooth attachment and replacement play significant roles in the feeding ecology of polyphyodont vertebrates, yet these aspects have remained largely unexplored in non-avialan paravians including troodontids. Here, we describe a new troodontid species, Urbacodon norelli sp.n., recovered from the Upper Cretaceous Iren Dabasu Formation of Inner Mongolia, China, based on an incomplete right dentary and 12 associated replacement teeth. Urbacodon norelli is distinguished from all other known troodontids, including its relative U. itemirensis from Uzbekistan, by several features: the presence of paired dentary symphyseal foramina, the presence of a relatively steep anterior margin of the dentary, the absence of a dentary chin, the presence of a common groove hosting the anterior 12 dentary teeth, and the presence of relatively larger dentary teeth. Phylogenetic analysis places both species of Urbacodon as sister taxa to Zanabazar junior, confirming their status as later-diverging troodontids. Radiographs revealed an alternating tooth replacement pattern in U. norelli, with a maximum Zahnreihen-spacing estimated to be 3. During tooth replacement, the anteriorly inclined interdental septa, which wedge between anterior dentary teeth, underwent frequent remodelling as the developing tooth moved upwards, particularly anterolabially. This rapid turnover left insufficient time for an interdental plate to form, resulting in the absence of such structures in this specimen. The frequent remodelling of periodontal tissues accompanying tooth replacement is likely to account for the absence of interdental plates. The discovery of this new troodontid expands our understanding of paravian theropods from the Upper Cretaceous Iren Dabasu Formation and provides valuable insights into troodontid tooth biology.

15.
Bioorg Chem ; 150: 107584, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38964146

RESUMEN

Developing multitargeted ligands as promising therapeutics for Alzheimer's disease (AD) has been considered important. Herein, a novel class of cinnamamide/ester-triazole hybrids with multifaceted effects on AD was developed based on the multitarget-directed ligands strategy. Thirty-seven cinnamamide/ester-triazole hybrids were synthesized, with most exhibiting significant inhibitory activity against Aß-induced toxicity at a single concentration in vitro. The most optimal hybrid compound 4j inhibited copper-induced Aß toxicity in AD cells. its action was superior to that of donepezil and memantine. It also moderately inhibited intracellular AChE activity and presented favorable bioavailability and blood-brain barrier penetration with low toxicity in vivo. Of note, it ameliorated cognitive impairment, neuronal degeneration, and Aß deposition in Aß1-42-injured mice. Mechanistically, the compound regulated APP processing by promoting the ADAM10-associated nonamyloidogenic signaling and inhibiting the BACE1-mediated amyloidogenic pathway. Moreover, it suppressed intracellular AChE activity and tau phosphorylation. Therefore, compound 4j may be a promising multitargeted active molecule against AD.

16.
Environ Res ; 257: 119330, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38830394

RESUMEN

Plant environmental stress response has become a global research hotspot, yet there is a lack of clear understanding regarding the mechanisms that maintain microbial diversity and their ecosystem services under environmental stress. In our research, we examined the effects of moderate elevation on the rhizosphere soil characteristics, microbial community composition, and ecosystem multifunctionality (EMF) within agricultural systems. Our findings revealed a notable negative correlation between EMF and elevation, indicating a decline in multifunctionality at higher elevations. Additionally, our analysis across bacterial and protistan communities showed a general decrease in microbial richness with increasing elevation. Using random forest models, pH was identified as the key environmental stressor influencing microbial communities. Furthermore, we found that microbial community diversity is negatively correlated with stability by mediating complexity. Interestingly, while pH was found to affect the complexity within bacterial networks, it did not significantly impact the ecosystem stability along the elevation gradients. Using a Binary-State Speciation and Extinction (BiSSE) model to explore the evolutionary dynamics, we found that Generalists had higher speciation rates and lower extinction rates compared to specialists, resulting in a skewed distribution towards higher net diversification for generalists under increasing environmental stress. Moreover, structural equation modeling (SEM) analysis highlighted a negative correlation between environmental stress and community diversity, but showed a positive correlation between environmental stress and degree of cooperation & competition. These interactions under environmental stress indirectly increased community stability and decreased multifunctionality. Our comprehensive study offers valuable insights into the intricate relationship among environmental factors, microbial communities, and ecosystem functions, especially in the context of varying elevation gradients. These findings contribute significantly to our understanding of how environmental stressors affect microbial diversity and ecosystem services, providing a foundation for future ecological research and management strategies in similar contexts.


Asunto(s)
Ecosistema , Microbiota , Microbiología del Suelo , Suelo , Concentración de Iones de Hidrógeno , Suelo/química , Altitud , Biodiversidad
17.
Qual Life Res ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839679

RESUMEN

PURPOSE: Health-related quality-of-life (HRQoL) data for the chronic heart failure (HF) population in Malaysia are lacking. Using EQ-5D-5L, this study intended to describe their HRQoL, identify predictors of worse HRQoL, and derive EQ-5D-5L index scores for use in economic evaluations. METHODS: A cross-sectional survey was conducted between April and September 2023 to collect EQ-5D-5L, sociodemographic, and clinical data from outpatients with HF across seven public specialist hospitals in Malaysia. Multivariable logistic and linear regression models were used to identify independent predictors of reported problems in the EQ-5D-5L dimensions, and predictors of index scores and EQ-VAS, respectively. RESULTS: EQ-5D-5L data from 424 outpatients of multi-ethnic background (mean age: 57.1 years, 23.8% female, mean left ventricular ejection fraction: 35.7%, 89.7% NYHA class I-II) were collected using either Malay, English, or Chinese, achieving a 99.8% completion rate. Nearly half of the respondents reported issues in the Mobility, Usual Activities, and Pain/Discomfort dimensions. Mean EQ-5D-5L index was 0.820, lower than the general population, and significantly lower with NYHA class III-IV (0.747) versus NYHA class I (0.846) and NYHA class II (0.805). Besides NYHA class, independent predictors of worse HRQoL included Indian ethnicity, living alone, lower education, unemployment due to ill-health, and proxy-reported HRQoL, largely aligning with existing literature. CONCLUSION: Community-dwelling Malaysians with HF reported poorer HRQoL compared to the general population. The observed disparities in HRQoL among HF patients may be linked to specific patient characteristics, suggesting potential areas for targeted interventions. HRQoL assessment using EQ-5D-5L proves feasible and should be considered for routine implementation in local clinics.

18.
BMC Pulm Med ; 24(1): 242, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755605

RESUMEN

INTRODUCTION: Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS: This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS: Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION: This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Análisis de la Aleatorización Mendeliana , Fenotipo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Receptores CCR2/genética , Linfocitos T CD8-positivos/inmunología , Antígenos CD28/genética
19.
Biochem Genet ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416272

RESUMEN

miRNA has been a research hotspot in recent years and its scope of action is very wide, involving the regulation of cell proliferation, differentiation, apoptosis, and other biological behaviors. This study intends to explore the role of miRNA in the lipid metabolism and development of Wilms tumor (WT) by detecting and analyzing the differences in the expression profiles of miRNAs between the tumor and adjacent normal tissue. Gene detection was performed in tumor tissues and adjacent normal tissues of three cases of WT to screen differentially expressed miRNAs (DEMs). According to our previous research, FASN, which participates in the lipid metabolism pathway, may be a target of WT. The starBase database was used to predict FASN-targeted miRNAs. The above two groups of miRNAs were intersected to obtain FASN-targeted DEMs and then GO Ontology (GO) functional enrichment analysis of FASN-targeted DEMs was performed. Finally, the FASN-targeted DEMs were compared and further verified by qRT‒PCR. Through gene sequencing and differential analysis, 287 DEMs were obtained, including 132 upregulated and 155 downregulated miRNAs. The top ten DEMs were all downregulated. Fourteen miRNAs targeted by the lipid metabolism-related gene FASN were predicted by starBase. After intersection with the DEMs, three miRNAs were finally obtained, namely, miR-107, miR-27a-3p, and miR-335-5p. GO enrichment analysis was mainly concentrated in the Parkin-FBXW7-Cul1 ubiquitin ligase complex and response to prostaglandin E. Further experimental verification showed that miR-27a-3p was significantly correlated with WT (P = 0.0018). Imbalanced expression of miRNAs may be involved in the occurrence and development of WT through lipid metabolism. The expression of miR-27a-3p is related to the malignant degree of WT, and it may become the target of diagnosis, prognosis, and treatment of WT in the later stage.

20.
Angew Chem Int Ed Engl ; 63(12): e202319773, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38279666

RESUMEN

We report herein the development of palladium-catalyzed deacylative deuteration of arylketone oxime ethers. This protocol features excellent functional group tolerance, heterocyclic compatibility, and high deuterium incorporation levels. Regioselective deuteration of some biologically important drugs and natural products are showcased via Friedel-Crafts acylation and subsequent deacylative deuteration. Vicinal meta-C-H bond functionalization (including fluorination, arylation, and alkylation) and para-C-H bond deuteration of electro-rich arenes are realized by using the ketone as both directing group and leaving group, which is distinct from aryl halide in conventional dehalogenative deuteration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA