Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 330: 117214, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36623386

RESUMEN

A park that had used reclaimed water as the sole water supply for fourteen years, was selected to analyze the distribution, sources and risks of 16 priority polycyclic aromatic hydrocarbons (PAHs) in waters and sediments. The effects of phytoremediation were investigated in waterbodies classified as phytoremediation, transitional and non-phytoremediation areas. Diagnostic ratio (DR) and principal component analysis (PCA) were used to analyze the sources of PAHs, while risk quotient (RQ) was used as risk assessment tool. Results showed that ∑PAH concentrations in sediments ranged from 29.4 to 1245.6 ng‧g-1, with average of 354.3 ng‧g-1, corresponding to a moderate pollution level. The concentration of PAHs in water ranged from 10.6 to 326.3 ng‧L-1, with average of 147.2 ng‧L-1, corresponding to a low pollution level. The ∑PAHs in sediments showed a downward trend from northwest to southeast along with the water flow direction, with average values of 459.5, 362.9 and 246.1 ng‧L-1 in the upstream, midstream and downstream, respectively. In contrast, PAH concentrations in water were consistent with recreational activities in the urban park area. There were 95% of water samples and 72% of sediment samples obtaining the Ant/(Ant + Phe) > 0.1 and Flu/(Flu + Pyr) > 0.5, indicating that coal combustion was the major source of PAHs in both the water and sediment. The RQ∑PAH(NCs) values in water and sediment were all between 1 and 800, while RQ∑PAH(MPCs) reached equal to 0, suggesting that ∑PAHs presented a low ecological risk. Acenaphthene accounted for 28.4% of RQ(NCs), and became the most risk PAH in water column. Aquatic plants effectively removed high-ring PAHs from water and middle-ring PAHs from sediments, reducing the overall risks posed by PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Agua/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , China , Sedimentos Geológicos
2.
Sci Total Environ ; 888: 164069, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37207778

RESUMEN

To illustrate the evolution process, environmental feature and phytoremediation effect of phosphorus (P) in waterbodies with long-term replenishment by reclaimed water (RW), an urban waterbody using RW as the sole supply was selected as a case study. The concentration and distribution of soluble reactive phosphate (SRP), dissolved organic P (DOP) and particulate P (PP) in water column, as well as organic P (OP), inorganic P (IP), exchangeable P (Ex-P), BD-P (redox-sensitive P), NaOH-P (P bound to Fe and Al oxyhydroxides) and HCl-P (P bound to Ca) in sediment were investigated. Results showed that the seasonal average concentrations of total phosphorus (TPw) in water column ranged from 0.048 to 0.130 mg∙L-1, with the highest in summer and the lowest in winter. P in water column was predominantly present in dissolved state, with the similar proportions of SRP and DOP. SRP decreased apparently in midstream, where the phytoremediation was applied extensively. PP content obviously increased in non-phytoremediation area in downstream, due to visitor activity and sediment resuspension. Total phosphorus (TPs) in sediments was between 352.9 and 1331.3 mg∙kg-1, with average 365.7 mg∙kg-1 of IP and 382.8 mg∙kg-1 of OP. Among IP, HCl-P had the highest proportion, followed by BD-P, NaOH-P and Ex-P. OP was significantly higher in phytoremediation areas than that in non-phytoremediation areas. Coverage of aquatic plants was positively correlated with TP, OP, BAP, while it was negatively correlated with BD-P. Hydrophyte stabilized and conserved active P in sediment and prevented release of active P. Moreover, hydrophyte increased NaOH-P and OP contents in sediment through regulating the abundance of phosphorus-solubilizing bacteria (PSB), such as Lentzea and Rhizobium. Four sources were identified through two multivariate statistical models. RW and runoff were the dominant sources of P accounting for 52.09 %, which mainly contributed to P in sediment especially IP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA