Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(9): 923-931, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104634

RESUMEN

The basic principle of adaptive immunity is to strictly discriminate between self and non-self, and a central challenge to overcome is the enormous variety of pathogens that might be encountered. In cell-mediated immunity, immunological discernment takes place at a molecular or cellular level. Central to both mechanisms of discernment is the generation of antigenic peptides associated with MHC class I molecules, which is achieved by a proteolytic complex called the proteasome. To adequately accomplish the discrimination between self and non-self that is essential for adaptive immunity and self-tolerance, two proteasome subtypes have evolved via gene duplication: the immunoproteasome and the thymoproteasome. In this Review, we describe various aspects of these immunity-dedicated proteasomes, from their discovery to recent findings.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Evolución Molecular , Complejo de la Endopetidasa Proteasomal/inmunología , Timo/inmunología , Inmunidad Adaptativa , Animales , Autoantígenos/inmunología , Duplicación de Gen , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Péptidos/inmunología , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Autotolerancia
2.
Mol Cell ; 81(7): 1411-1424.e7, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33567268

RESUMEN

Targeted protein degradation is an emerging therapeutic paradigm. Small-molecule degraders such as proteolysis-targeting chimeras (PROTACs) induce the degradation of neo-substrates by hijacking E3 ubiquitin ligases. Although ubiquitylation of endogenous substrates has been extensively studied, the mechanism underlying forced degradation of neo-substrates is less well understood. We found that the ubiquitin ligase TRIP12 promotes PROTAC-induced and CRL2VHL-mediated degradation of BRD4 but is dispensable for the degradation of the endogenous CRL2VHL substrate HIF-1α. TRIP12 associates with BRD4 via CRL2VHL and specifically assembles K29-linked ubiquitin chains, facilitating the formation of K29/K48-branched ubiquitin chains and accelerating the assembly of K48 linkage by CRL2VHL. Consequently, TRIP12 promotes the PROTAC-induced apoptotic response. TRIP12 also supports the efficiency of other degraders that target CRABP2 or TRIM24 or recruit CRBN. These observations define TRIP12 and K29/K48-branched ubiquitin chains as accelerators of PROTAC-directed targeted protein degradation, revealing a cooperative mechanism of branched ubiquitin chain assembly unique to the degradation of neo-substrates.


Asunto(s)
Proteínas Portadoras/metabolismo , Poliubiquitina/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HCT116 , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Poliubiquitina/genética , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
3.
EMBO J ; 43(5): 754-779, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38287189

RESUMEN

Tank-binding kinase 1 (TBK1) is a Ser/Thr kinase that is involved in many intracellular processes, such as innate immunity, cell cycle, and apoptosis. TBK1 is also important for phosphorylating the autophagy adaptors that mediate the selective autophagic removal of damaged mitochondria. However, the mechanism by which PINK1-Parkin-mediated mitophagy activates TBK1 remains largely unknown. Here, we show that the autophagy adaptor optineurin (OPTN) provides a unique platform for TBK1 activation. Both the OPTN-ubiquitin and the OPTN-pre-autophagosomal structure (PAS) interaction axes facilitate assembly of the OPTN-TBK1 complex at a contact sites between damaged mitochondria and the autophagosome formation sites. At this assembly point, a positive feedback loop for TBK1 activation is initiated that accelerates hetero-autophosphorylation of the protein. Expression of monobodies engineered here to bind OPTN impaired OPTN accumulation at contact sites, as well as the subsequent activation of TBK1, thereby inhibiting mitochondrial degradation. Taken together, these data show that a positive and reciprocal relationship between OPTN and TBK1 initiates autophagosome biogenesis on damaged mitochondria.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Transporte de Membrana , Membranas Mitocondriales , Mitofagia , Humanos , Autofagia/fisiología , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Nat Immunol ; 17(8): 938-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27294792

RESUMEN

The cells that stimulate positive selection express specialized proteasome ß-subunits different from those expressed by all other cells, including those involved in negative selection. Mice that lack all four specialized proteasome ß-subunits, and therefore express only constitutive proteasomes in all cells, had a profound defect in the generation of CD8(+) T cells. While a defect in positive selection would reflect an inability to generate the appropriate positively selecting peptides, a block at negative selection would point to the potential need to switch peptides between positive selection and negative selection to avoid the two processes' often cancelling each other out. We found that the block in T cell development occurred around the checkpoints of positive selection and, unexpectedly, negative selection as well.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Selección Clonal Mediada por Antígenos , Cisteína Endopeptidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Timo/inmunología , Animales , Presentación de Antígeno/genética , Diferenciación Celular , Células Cultivadas , Cisteína Endopeptidasas/genética , Femenino , Antígenos de Histocompatibilidad Clase I/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/genética
5.
Nat Immunol ; 16(10): 1069-76, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26301566

RESUMEN

In the thymus, low-affinity T cell antigen receptor (TCR) engagement facilitates positive selection of a useful T cell repertoire. Here we report that TCR responsiveness of mature CD8(+) T cells is fine tuned by their affinity for positively selecting peptides in the thymus and that optimal TCR responsiveness requires positive selection on major histocompatibility complex class I-associated peptides produced by the thymoproteasome, which is specifically expressed in the thymic cortical epithelium. Thymoproteasome-independent positive selection of monoclonal CD8(+) T cells results in aberrant TCR responsiveness, homeostatic maintenance and immune responses to infection. These results demonstrate a novel aspect of positive selection, in which TCR affinity for positively selecting peptides produced by thymic epithelium determines the subsequent antigen responsiveness of mature CD8(+) T cells in the periphery.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Proliferación Celular , Citometría de Flujo , Ratones , Péptidos/inmunología , Timo/enzimología
6.
Cell ; 150(1): 151-64, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22727045

RESUMEN

Cellular wound healing, enabling the repair of membrane damage, is ubiquitous in eukaryotes. One aspect of the wound healing response is the redirection of a polarized cytoskeleton and the secretory machinery to the damage site. Although there has been recent progress in identifying conserved proteins involved in wound healing, the mechanisms linking these components into a coherent response are not defined. Using laser damage in budding yeast, we demonstrate that local cell wall/membrane damage triggers the dispersal of proteins from the site of polarized growth, enabling their accumulation at the wound. We define a protein-kinase-C-dependent mechanism that mediates the destruction of the formin Bni1 and the exocyst component Sec3. This degradation is essential to prevent competition between the site of polarized growth and the wound. Mechanisms to overcome competition from a pre-existing polarized cytoskeleton may be a general feature of effective wound healing in polarized cells.


Asunto(s)
Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Polaridad Celular , Citoesqueleto/metabolismo , Eucariontes/citología , Eucariontes/fisiología , Proteínas de Microfilamentos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nature ; 596(7872): 372-376, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34408328

RESUMEN

Many emerging materials, such as ultrastable glasses1,2 of interest for phone displays and OLED television screens, owe their properties to a gradient of enhanced mobility at the surface of glass-forming liquids. The discovery of this surface mobility enhancement3-5 has reshaped our understanding of the behaviour of glass formers and of how to fashion them into improved materials. In polymeric glasses, these interfacial modifications are complicated by the existence of a second length scale-the size of the polymer chain-as well as the length scale of the interfacial mobility gradient6-9. Here we present simulations, theory and time-resolved surface nano-creep experiments to reveal that this two-scale nature of glassy polymer surfaces drives the emergence of a transient rubbery, entangled-like surface behaviour even in polymers comprised of short, subentangled chains. We find that this effect emerges from superposed gradients in segmental dynamics and chain conformational statistics. The lifetime of this rubbery behaviour, which will have broad implications in constraining surface relaxations central to applications including tribology, adhesion, and surface healing of polymeric glasses, extends as the material is cooled. The surface layers suffer a general breakdown in time-temperature superposition (TTS), a fundamental tenet of polymer physics and rheology. This finding may require a reevaluation of strategies for the prediction of long-time properties in polymeric glasses with high interfacial areas. We expect that this interfacial transient elastomer effect and TTS breakdown should normally occur in macromolecular systems ranging from nanocomposites to thin films, where interfaces dominate material properties5,10.

8.
Nature ; 578(7794): 296-300, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025036

RESUMEN

The proteasome is a major proteolytic machine that regulates cellular proteostasis through selective degradation of ubiquitylated proteins1,2. A number of ubiquitin-related molecules have recently been found to be involved in the regulation of biomolecular condensates or membraneless organelles, which arise by liquid-liquid phase separation of specific biomolecules, including stress granules, nuclear speckles and autophagosomes3-8, but it remains unclear whether the proteasome also participates in such regulation. Here we reveal that proteasome-containing nuclear foci form under acute hyperosmotic stress. These foci are transient structures that contain ubiquitylated proteins, p97 (also known as valosin-containing protein (VCP)) and multiple proteasome-interacting proteins, which collectively constitute a proteolytic centre. The major substrates for degradation by these foci were ribosomal proteins that failed to properly assemble. Notably, the proteasome foci exhibited properties of liquid droplets. RAD23B, a substrate-shuttling factor for the proteasome, and ubiquitylated proteins were necessary for formation of proteasome foci. In mechanistic terms, a liquid-liquid phase separation was triggered by multivalent interactions of two ubiquitin-associated domains of RAD23B and ubiquitin chains consisting of four or more ubiquitin molecules. Collectively, our results suggest that ubiquitin-chain-dependent phase separation induces the formation of a nuclear proteolytic compartment that promotes proteasomal degradation.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Fisiológico , Ubiquitinación , Línea Celular , Núcleo Celular/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Presión Osmótica , Poliubiquitina/metabolismo , Proteolisis , Proteostasis , Proteínas Ribosómicas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/metabolismo
9.
J Biol Chem ; : 107476, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879013

RESUMEN

DJ-1, a causative gene for hereditary recessive Parkinsonism, is evolutionarily conserved across eukaryotes and prokaryotes. Structural analyses of DJ-1 and its homologs suggested the 106th Cys is a nucleophilic cysteine functioning as the catalytic center of hydratase or hydrolase activity. Indeed, DJ-1 and its homologs can convert highly electrophilic α-oxoaldehydes such as methylglyoxal into α-hydroxy acids as hydratase in vitro, and oxidation-dependent ester hydrolase (esterase) activity has also been reported for DJ-1. The mechanism underlying such plural activities, however, has not been fully characterized. To address this knowledge gap, we conducted a series of biochemical assays assessing the enzymatic activity of DJ-1 and its homologs. We found no evidence for esterase activity in any of the Escherichia coli DJ-1 homologs. Furthermore, contrary to previous reports, we found that oxidation inactivated rather than facilitated DJ-1 esterase activity. The E. coli DJ-1 homolog HchA possesses phenylglyoxalase and methylglyoxalase activities but lacks esterase activity. Since evolutionary trace analysis identified the 186th H as a candidate residue involved in functional differentiation between HchA and DJ-1, we focused on H186 of HchA and found that an esterase activity was acquired by H186A mutation. Introduction of reverse mutations into the equivalent position in DJ-1 (A107H) selectively eliminated its esterase activity without compromising α-oxoaldehyde hydratase activity. The obtained results suggest that differences in the amino acid sequences near the active site contributed to acquisition of esterase activity in vitro, and provide an important clue to the origin and significance of DJ-1 esterase activity.

10.
Genes Cells ; 29(5): 438-445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528683

RESUMEN

In the nervous system, proteasomes are important for proteolysis and cellular homeostasis of neurons and glial cells and for brain health. Proteasome function declines with age in many tissues, including the nervous system, and this decline affects many of the nervous system processes important to brain health and may be related to age-related cognitive decline. Therefore, we analyzed the factors that contribute to this decline in function using the brain of mice from different months of life. Peptidase activity of proteasomes in crude extracts decreased with aging, while ubiquitinated proteins increased with aging. Additionally, there was a tendency for the number of subunits that form proteasomes to decrease slightly with age. On the other hand, ump1, which is required for proteasome formation, accumulated with age. Therefore, analysis of proteasome dynamics in each month revealed that proteasome formation decreased with aging. This study suggests that with aging, not only 20S proteasome function but also 26 proteasome function decreases, the decline in proteasome function is due to the lack of proteasome formation, the PA28-20S-PA700 complex, which is involved in immunity, increases in the brain, and one factor in this lack of proteasome formation is that the proteins called UMP1.


Asunto(s)
Envejecimiento , Encéfalo , Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Envejecimiento/metabolismo , Encéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Masculino
11.
Plant Cell ; 34(4): 1354-1374, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35089338

RESUMEN

Ubiquitination is a post-translational modification involving the reversible attachment of the small protein ubiquitin to a target protein. Ubiquitination is involved in numerous cellular processes, including the membrane trafficking of cargo proteins. However, the ubiquitination of the trafficking machinery components and their involvement in environmental responses are not well understood. Here, we report that the Arabidopsis thaliana trans-Golgi network/early endosome localized SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein SYP61 interacts with the transmembrane ubiquitin ligase ATL31, a key regulator of resistance to disrupted carbon (C)/nitrogen/(N)-nutrient conditions. SYP61 is a key component of membrane trafficking in Arabidopsis. The subcellular localization of ATL31 was disrupted in knockdown mutants of SYP61, and the insensitivity of ATL31-overexpressing plants to high C/low N-stress was repressed in these mutants, suggesting that SYP61 and ATL31 cooperatively function in plant responses to nutrient stress. SYP61 is ubiquitinated in plants, and its ubiquitination level is upregulated under low C/high N-nutrient conditions. These findings provide important insights into the ubiquitin signaling and membrane trafficking machinery in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Proteínas SNARE/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Red trans-Golgi/metabolismo
12.
Nat Chem Biol ; 19(3): 311-322, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36316570

RESUMEN

Targeted protein degradation through chemical hijacking of E3 ubiquitin ligases is an emerging concept in precision medicine. The ubiquitin code is a critical determinant of the fate of substrates. Although two E3s, CRL2VHL and CRL4CRBN, frequently assemble with proteolysis-targeting chimeras (PROTACs) to attach lysine-48 (K48)-linked ubiquitin chains, the diversity of the ubiquitin code used for chemically induced degradation is largely unknown. Here we show that the efficacy of cIAP1-targeting degraders depends on the K63-specific E2 enzyme UBE2N. UBE2N promotes degradation of cIAP1 induced by cIAP1 ligands and subsequent cancer cell apoptosis. Mechanistically, UBE2N-catalyzed K63-linked ubiquitin chains facilitate assembly of highly complex K48/K63 and K11/K48 branched ubiquitin chains, thereby recruiting p97/VCP, UCH37 and the proteasome. Degradation of neo-substrates directed by cIAP1-recruiting PROTACs also depends on UBE2N. These results reveal an unexpected role for K63-linked ubiquitin chains and UBE2N in degrader-induced proteasomal degradation and demonstrate the diversity of the ubiquitin code used for chemical hijacking.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
13.
Mol Cell ; 66(4): 488-502.e7, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525741

RESUMEN

Ubiquitin-binding domain (UBD) proteins regulate numerous cellular processes, but their specificities toward ubiquitin chain types in cells remain obscure. Here, we perform a quantitative proteomic analysis of ubiquitin linkage-type selectivity of 14 UBD proteins and the proteasome in yeast. We find that K48-linked chains are directed to proteasomal degradation through selectivity of the Cdc48 cofactor Npl4. Mutating Cdc48 results in decreased selectivity, and lacking Rad23/Dsk2 abolishes interactions between ubiquitylated substrates and the proteasome. Among them, only Npl4 has K48 chain specificity in vitro. Thus, the Cdc48 complex functions as a K48 linkage-specifying factor upstream of Rad23/Dsk2 for proteasomal degradation. On the other hand, K63 chains are utilized in endocytic pathways, whereas both K48 and K63 chains are found in the MVB and autophagic pathways. Collectively, our results provide an overall picture of the ubiquitin network via UBD proteins and identify the Cdc48-Rad23/Dsk2 axis as a major route to the proteasome.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Ubiquitinación/efectos de los fármacos , Ubiquitinas/genética , Proteína que Contiene Valosina
14.
Mol Cell ; 68(2): 350-360.e7, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053958

RESUMEN

The proper location and timing of Dnmt1 activation are essential for DNA methylation maintenance. We demonstrate here that Dnmt1 utilizes two-mono-ubiquitylated histone H3 as a unique ubiquitin mark for its recruitment to and activation at DNA methylation sites. The crystal structure of the replication foci targeting sequence (RFTS) of Dnmt1 in complex with H3-K18Ub/23Ub reveals striking differences to the known ubiquitin-recognition structures. The two ubiquitins are simultaneously bound to the RFTS with a combination of canonical hydrophobic and atypical hydrophilic interactions. The C-lobe of RFTS, together with the K23Ub surface, also recognizes the N-terminal tail of H3. The binding of H3-K18Ub/23Ub results in spatial rearrangement of two lobes in the RFTS, suggesting the opening of its active site. Actually, incubation of Dnmt1 with H3-K18Ub/23Ub increases its catalytic activity in vitro. Our results therefore shed light on the essential role of a unique ubiquitin-binding module in DNA methylation maintenance.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , Metilación de ADN , Histonas/química , Ubiquitina/química , Animales , Cristalografía por Rayos X , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína , Ubiquitina/genética , Ubiquitina/metabolismo , Xenopus laevis
15.
J Biol Chem ; 299(2): 102822, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563856

RESUMEN

RING-between RING (RBR)-type ubiquitin (Ub) ligases (E3s) such as Parkin receive Ub from Ub-conjugating enzymes (E2s) in response to ligase activation. However, the specific E2s that transfer Ub to each RBR-type ligase are largely unknown because of insufficient methods for monitoring their interaction. To address this problem, we have developed a method that detects intracellular interactions between E2s and activated Parkin. Fluorescent homotetramer Azami-Green fused with E2 and oligomeric Ash (Assembly helper) fused with Parkin form a liquid-liquid phase separation (LLPS) in cells only when E2 and Parkin interact. Using this method, we identified multiple E2s interacting with activated Parkin on damaged mitochondria during mitophagy. Combined with in vitro ubiquitination assays and bioinformatics, these findings revealed an underlying consensus sequence for E2 interactions with activated Parkin. Application of this method to other RBR-type E3s including HOIP, HHARI, and TRIAD1 revealed that HOIP forms an LLPS with its substrate NEMO in response to a proinflammatory cytokine and that HHARI and TRIAD1 form a cytosolic LLPS independent of Ub-like protein NEDD8. Since an E2-E3 interaction is a prerequisite for RBR-type E3 activation and subsequent substrate ubiquitination, the method we have established here can be an in-cell tool to elucidate the potentially novel mechanisms involved in RBR-type E3s.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/aislamiento & purificación , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/aislamiento & purificación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Unión Proteica , Mitofagia , Mitocondrias/metabolismo , Mitocondrias/patología , Quinasa I-kappa B/metabolismo
16.
Langmuir ; 40(24): 12613-12621, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38767655

RESUMEN

The adhesion of epoxy adhesives to aluminum materials is an important issue in assembling parts for lightweight mobility. Aluminum surfaces typically possess an oxide layer, which readily adsorbs water. In this study, the aggregation states of water and its effect on the curing reaction were examined by placing a water layer between an amorphous alumina surface and a mixture of epoxy and amine components. This study used molecular dynamics simulations and density functional theory calculations. Before the reaction, water molecules strongly adsorbed onto the alumina surface, aggregating excess water. Some water diffused into the epoxy/amine mixture, accelerating the diffusion of unreacted substances. This led to faster reaction kinetics, particularly in proximity to the alumina surface. The adsorption of water molecules onto the alumina surface and the aggregation of excess water were similarly observed even after the curing process. Subsequently, the interaction between the alumina surface and various functional groups of the epoxy/amine mixture was evaluated before and after the reaction. Epoxy monomers had little interaction with the alumina surface before the reaction, whereas hydroxy groups formed by the ring-opening reaction of epoxy groups exhibited notable interaction. Conversely, sulfonyl and amino groups in amine compounds formed hydrogen bonds with OH groups on the alumina surface before the reaction. However, after the reaction, amino groups weakened their interaction with the alumina OH groups as they transformed from primary to tertiary during the curing reaction. Both epoxy and amine monomers/fragments similarly interacted with water molecules, both before and after the reaction. The insights gained from this study are expected to contribute to a better understanding of the impact of moisture absorption on the application of epoxy resins.

17.
Langmuir ; 40(18): 9725-9731, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652685

RESUMEN

A better understanding of the aggregation states of adhesive molecules in the interfacial region with an adherend is crucial for controlling the adhesion strength and is of great inherent academic interest. The adhesion mechanism has been described through four theories: adsorption, mechanical, diffusion, and electronic. While interfacial characterization techniques have been developed to validate the aforementioned theories, that related to the electronic theory has not yet been thoroughly studied. We here directly detected the electronic interaction between a commonly used thermosetting adhesive, cured epoxy of diglycidyl ether of bisphenol A (DGEBA) and 4,4'-diaminodiphenylmethane (DDM), and copper (Cu). This study used a combination of density functional theory (DFT) calculations and femtosecond transient absorption spectroscopic (TAS) measurements as this epoxy adhesive-Cu pairing is extensively used in electronic device packaging. The DFT calculations predicted that π electrons in a DDM molecule adsorbed onto the Cu surface flowed out onto the Cu surface, resulting in a positive charge on the DDM. TAS measurements for the Cu/epoxy multilayer film, a model sample containing many metal/adhesive interfaces, revealed that the electronic states of excited DDM moieties at the Cu interface were different from those in the bulk region. These results were in good accordance with the prediction by DFT calculations. Thus, it can be concluded that TAS is applicable to characterize the electronic interaction of adhesives with metal adherends in a nondestructive manner.

18.
Cell ; 137(5): 900-13, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19446323

RESUMEN

The 26S proteasome is a highly conserved multisubunit protease that degrades ubiquitinated proteins in eukaryotic cells. The 26S proteasome consists of the proteolytic core particle (CP) and one or two 19S regulatory particles (RPs). Although the mechanisms of CP assembly are well described, the mechanism of RP assembly is largely unknown. Here, we show that four proteasome-interacting proteins (PIPs), Nas2/p27, Nas6/gankyrin, Rpn14/PAAF1, and Hsm3/S5b, bind specific Rpt subunits of the RP and interact each other genetically. Lack of these PIPs resulted in defective assembly of the 26S proteasome at an early stage, suggesting that these proteins are bona fide RP chaperones. Each of the RP chaperones formed distinct specific subassemblies of the base components and escorted them to mature RPs. Our results indicate that the RP assembly is a highly organized and elaborate process orchestrated by multiple proteasome-dedicated chaperones.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Cell ; 137(3): 549-59, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19410548

RESUMEN

The dynamic and reversible process of ubiquitin modification controls various cellular activities. Ubiquitin exists as monomers, unanchored chains, or protein-conjugated forms, but the regulation of these interconversions remains largely unknown. Here, we identified a protein designated Rfu1 (regulator of free ubiquitin chains 1), which regulates intracellular concentrations of monomeric ubiquitins and free ubiquitin chains in Saccharomyces cerevisiae. Rfu1 functions as an inhibitor of Doa4, a deubiquitinating enzyme. Rapid loss of free ubiquitin chains upon heat shock, a condition in which more proteins require ubiquitin conjugation, was mediated in part by Doa4 and Rfu1. Thus, regulation of ubiquitin homeostasis is controlled by a balance between a deubiquitinating enzyme and its inhibitor. We propose that free ubiquitin chains function as a ubiquitin reservoir that allows maintenance of monomeric ubiquitins at adequate levels under normal conditions and rapid supply for substrate conjugation under stress conditions.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Regulación Alostérica , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/metabolismo , Humanos , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Transducción de Señal , Estrés Fisiológico , Ubiquitina Tiolesterasa , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
20.
Cell ; 137(5): 914-25, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19490896

RESUMEN

The 26S proteasome is an enzymatic complex that degrades ubiquitinated proteins in eukaryotic cells. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The latter is further divided into the lid and base subcomplexes. While the mechanism involved in the assembly of the CP is well investigated, that of the RP is poorly understood. Here, we show that the formation of the mammalian base subcomplex involves three distinct modules, where specific pairs of ATPase subunits are associated with the distinct chaperones p28, S5b, or p27. The process of base formation starts from association of the p28-Rpt3-Rpt6-Rpn14 complex with the S5b-Rpt1-Rpt2-Rpn1 complex, followed by incorporation of the p27-Rpt5-Rpt4 complex and Rpn2, where p28, S5b, and p27 regulate the associations between the modules. These chaperones dissociate before completion of 26S proteasome formation. Our results demonstrate that base assembly is facilitated by multiple proteasome-dedicated chaperones, like CP assembly.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Chaperonas Moleculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA