Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 27(7): 110187, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38989451

RESUMEN

Intratumoral heterogeneity is common in cancer, particularly in sarcomas like undifferentiated pleomorphic sarcoma (UPS), where individual cells demonstrate a high degree of cytogenic diversity. Previous studies showed that a small subset of cells within UPS, known as the metastatic clone (MC), as responsible for metastasis. Using a CRISPR-based genomic screen in-vivo, we identified the COMPASS complex member Setd1a as a key regulator maintaining the metastatic phenotype of the MC in murine UPS. Depletion of Setd1a inhibited metastasis development in the MC. Transcriptome and chromatin sequencing revealed COMPASS complex target genes in UPS, such as Cxcl10, downregulated in the MC. Deleting Cxcl10 in non-MC cells increased their metastatic potential. Treating mice with human UPS xenografts with a COMPASS complex inhibitor suppressed metastasis without affecting tumor growth in the primary tumor. Our data identified an epigenetic program in a subpopulation of sarcoma cells that maintains metastatic potential.

2.
Stem Cell Res ; 53: 102317, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33848794

RESUMEN

Culture expanded bone marrow stromal cells (BMSCs) are easily isolated, can be grown rapidly en masse, and contain both skeletal stem cells (SSCs) and multipotent mesenchymal progenitors (MMPs). Despite this functional heterogeneity, BMSCs continue to be utilized for many applications due to the lack of definitive and universally accepted markers to prospectively identify and purify SSCs. Isolation is widely based on adherence to tissue culture plastic; however, high hematopoietic contamination is a significant impediment in murine models. Remarkably, when cultured at a physiological oxygen tension of 1% O2, a 10-fold reduction in CD45+ hematopoietic cells associated with a concomitant increase in PDGFRα+ stromal cells occur. This is due, in part, to a differential response of the two populations to hypoxia. In standard tissue culture conditions of 21% O2, CD45+ cells showed increased proliferation coupled with no changes in cell death compared to their counterparts grown at 1% O2. In contrast, PDGFR α+ stromal cells responded to hypoxia by increasing proliferation and exhibiting a 10-fold decrease in cell death. In summary, we describe a simple and reliable method exploiting the divergent biological response of hematopoietic and stromal cells to hypoxia to significantly increase the PDGFR α+ stromal cell population in murine BMSC cultures.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Hipoxia , Ratones , Células del Estroma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA