Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37507114

RESUMEN

Advances in single-cell multi-omics technology provide an unprecedented opportunity to fully understand cellular heterogeneity. However, integrating omics data from multiple modalities is challenging due to the individual characteristics of each measurement. Here, to solve such a problem, we propose a contrastive and generative deep self-expression model, called single-cell multimodal self-expressive integration (scMSI), which integrates the heterogeneous multimodal data into a unified manifold space. Specifically, scMSI first learns each omics-specific latent representation and self-expression relationship to consider the characteristics of different omics data by deep self-expressive generative model. Then, scMSI combines these omics-specific self-expression relations through contrastive learning. In such a way, scMSI provides a paradigm to integrate multiple omics data even with weak relation, which effectively achieves the representation learning and data integration into a unified framework. We demonstrate that scMSI provides a cohesive solution for a variety of analysis tasks, such as integration analysis, data denoising, batch correction and spatial domain detection. We have applied scMSI on various single-cell and spatial multimodal datasets to validate its high effectiveness and robustness in diverse data types and application scenarios.


Asunto(s)
Aprendizaje , Multiómica
2.
J Transl Med ; 22(1): 253, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459561

RESUMEN

Tobacco pollutants are prevalent in the environment, leading to inadvertent exposure of pregnant females. Studies of these pollutants' toxic effects on embryonic development have not fully elucidated the potential underlying mechanisms. Therefore, in this study, we aimed to investigate the developmental toxicity induced by cigarette smoke extract (CSE) at concentrations of 0.25, 1, and 2.5% using a zebrafish embryo toxicity test and integrated transcriptomic analysis of microRNA (miRNA) and messenger RNA (mRNA). The findings revealed that CSE caused developmental toxicity, including increased mortality and decreased incubation rate, in a dose-dependent manner. Moreover, CSE induced malformations and apoptosis, specifically in the head and heart of zebrafish larvae. We used mRNA and miRNA sequencing analyses to compare changes in the expression of genes and miRNAs in zebrafish larvae. The bioinformatics analysis indicates that the mechanism underlying CSE-induced developmental toxicity was associated with compromised genetic material damage repair, deregulated apoptosis, and disturbed lipid metabolism. The enrichment analysis and RT-qPCR show that the ctsba gene plays a crucial function in embryo developmental apoptosis, and the fads2 gene mainly regulates lipid metabolic toxicity. The results of this study improve the understanding of CSE-induced developmental toxicity in zebrafish embryos and contribute insights into the formulation of novel preventive strategies against tobacco pollutants during early embryonic development.


Asunto(s)
Contaminantes Ambientales , MicroARNs , Animales , Femenino , Pez Cebra/genética , Pez Cebra/metabolismo , Embrión no Mamífero/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/farmacología
3.
Cancer Cell Int ; 24(1): 101, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462618

RESUMEN

BACKGROUND: Despite advances in therapeutic strategies, resistance to immunotherapy and the off-target effects of targeted therapy have significantly weakened the benefits for patients with melanoma. MAIN BODY: Alternative splicing plays a crucial role in transcriptional reprogramming during melanoma development. In particular, aberrant alternative splicing is involved in the efficacy of immunotherapy, targeted therapy, and melanoma metastasis. Abnormal expression of splicing factors and variants may serve as biomarkers or therapeutic targets for the diagnosis and prognosis of melanoma. Therefore, comprehensively integrating their roles and related mechanisms is essential. This review provides the first detailed summary of the splicing process in melanoma and the changes occurring in this pathway. CONCLUSION: The focus of this review is to provide strategies for developing novel diagnostic biomarkers and summarize their potential to alter resistance to targeted therapies and immunotherapy.

4.
Respiration ; 103(2): 70-78, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38253034

RESUMEN

INTRODUCTION: Blood eosinophil count has been shown markedly variable across different populations. However, its distribution in Chinese general population remains unclear. We aimed to investigate blood eosinophil count and its determinants in a Chinese general population. METHODS: In this population-based study, general citizens of Sichuan province in China were extracted from the China Pulmonary Health study. Data on demographics, personal and family history, living condition, lifestyle, spirometry, and complete blood count test were obtained and analyzed. A stepwise multivariate binary logistic regression analysis was performed to identify determinants of high blood eosinophils (>75th percentile). RESULTS: A total of 3,310 participants were included, with a mean age (standard deviation) of 47.0 (15.6) years. In total population, the median blood eosinophil count was 110.0 (interquartile range [IQR]: 67.2-192.9) cells/µL, lower than that in smokers (133.4 cells/µL, IQR: 79.3-228.4) and patients with asthma (140.7 cells/µL, IQR: 79.6-218.2) or post-bronchodilator airflow limitation (141.5 cells/µL, IQR: 82.6-230.1), with a right-skewed distribution. Multivariate analyses revealed that oldness (aged ≥60 years) (odds ratio [OR]: 1.66, 95% confidence interval [CI]: 1.11-2.48), smoking ≥20 pack-years (OR: 1.90, 95% CI: 1.20-3.00), raising a dog/cat (OR: 1.72, 95% CI: 1.17-2.52), and occupational exposure to dust, allergen, and harmful gas (OR: 1.58, 95% CI: 1.15-2.15) were significantly associated with high blood eosinophils. CONCLUSION: This study identifies a median blood eosinophil count of 110.0 cells/µL and determinants of high blood eosinophils in a Chinese general population, including oldness (aged ≥60 years), smoking ≥20 pack-years, raising a dog/cat, and occupational exposure to dust, allergen, and harmful gas.


Asunto(s)
Asma , Eosinofilia , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Persona de Mediana Edad , Alérgenos , Asma/epidemiología , Polvo , Eosinofilia/epidemiología , Eosinófilos , Recuento de Leucocitos , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Adulto , Anciano
5.
Int J Phytoremediation ; 26(4): 524-534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37641540

RESUMEN

Mercury (Hg) pollution has seriously threatened the crop productivity and food security. In the present research, experiments were conducted to assess the influence of nanoscale sulfur/sulfur nanoparticles and the corresponding bulk and ionic sulfur forms on the growth and Hg accumulation of oilseed rape seedlings grown on Hg-contaminated soil, as well as the transformation of soil Hg fractions. The results showed a significant reduction in fresh biomass for seedlings grown on 80-200 mg/kg Hg-polluted soil after 30 days. At 120 mg/kg Hg treatment, 100-300 mg/kg sulfur nanoparticles (SNPs) application counteracted Hg toxicity more effectively compared to the corresponding bulk sulfur particles (BSPs) and ionic sulfur (sulfate) treatments. The seedlings treated with 120 mg/kg Hg + 300 mg/kg SNPs gained 54.2 and 56.9% more shoot and root biomass, respectively, compared to those treated with Hg alone. Meanwhile, 300 mg/kg SNPs application decreased Hg accumulation by 18.9 and 76.5% in shoots and roots, respectively, relative to Hg alone treatment.SNPs treatment caused more Hg to be blocked in the soil and accumulating significantly less Hg in plants as compared to other S forms. The chemical fractions of Hg in the soil were subsequently investigated, and the solubility of Hg was significantly decreased by applying SNPs to the soil. Especially 200-300 mg/kg SNPs treatments caused the ratio of the soluble/exchangeable and the specifically absorbed fraction to be the lowest, accounting for 1.95-4.13% of the total Hg of soil. These findings suggest that adding SNPs to Hg-contaminated soils could be an effective measure for immobilizing soluble Hg and decreasing the Hg concentration in the edible parts of crops. The results of the current study hold promise for the practical application of SNPs to Hg-contaminated farmland for better yields and simultaneously increasing the food safety.


The novelty of this study is the selection of oilseed rape and nanoscale sulfur (NS) or sulfur nanoparticles (SNPs) as nontoxic nanomaterial to counteract the Hg toxicity and accumulation. Oilseed rape was selected due to its wide adaptability to various environmental conditions and the high-value oil for human consumption and biofuels production. These advantages make oilseed rape a highly valuable crop for various applications. NS was selected due to its reported ability to limit the uptake of heavy metals in oilseed rape, rice, and wheat along with other crops and subsequently restrict the toxicity of heavy metals in these plants and improve food safety. In this study, we evaluated the growth, Hg accumulation, and the resulting toxicity in oilseed rape grown on Hg-contaminated soil, with or without amendments with NS. The outcomes from this study provided evidence of the significant potential of NS in preventing Hg bioaccumulation and improving crop yields in oilseed rape. This provides opportunity to use NS as an ideal non-GMO approach to limit toxic metals in crops.


Asunto(s)
Brassica napus , Mercurio , Contaminantes del Suelo , Plantones/química , Biodegradación Ambiental , Suelo , Azufre , Contaminantes del Suelo/análisis , Cadmio
6.
Int J Phytoremediation ; : 1-11, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597454

RESUMEN

In the present study, experiments were conducted to assess the influence of nanoscale sulfur in the microbial community structure of metallophytes in Hg-contaminated rhizosphere soil for planting rapeseed. The results showed that the richness and diversity of the rhizobacteria community decreased significantly under Hg stress, but increased slightly after SNPs addition, with a reduction in the loss of Hg-sensitive microorganisms. Moreover, all changes in the relative abundances of the top ten phyla influenced by Hg treatment were reverted when subjected to Hg + SNPs treatment, except for Myxococcota and Bacteroidota. Similarly, the top five genera, whose relative abundance decreased the most under Hg alone compared to CK, increased by 19.05%-54.66% under Hg + SNPs treatment compared with Hg alone. Furthermore, the relative abundance of Sphingomonas, as one of the dominant genera for both CK and Hg + SNPs treatment, was actively correlated with plant growth. Rhizobacteria, like Pedobacter and Massilia, were significantly decreased under Hg + SNPs and were positively linked to Hg accumulation in plants. This study suggested that SNPs could create a healthier soil microecological environment by reversing the effect of Hg on the relative abundance of microorganisms, thereby assisting microorganisms to remediate heavy metal-contaminated soil and reduce the stress of heavy metals on plants.


In this manuscript, we first comprehensively investigated the changes in the rhizosphere microbial community structure of metallophytes in Hg-contaminated soil with SNPs addition, as well as the relationship between soil microbiology and plant resistance to Hg stress. Our results demonstrated that SNPs exhibit a significant advantage in improving rhizosphere microecology by increasing the abundance of beneficial rhizobacteria, thereby alleviating heavy metal toxicity, and promoting plant growth. This study is the first study describing the response of soil microorganisms coexposed to heavy metals and SNPs, providing valuable information for the potential use of SNPs to assist phytoremediation of toxic metal pollution and its impact on soil microbial communities.

7.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 197-206, 2024 Feb 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38755716

RESUMEN

Scars are classified into 5 types: Superficial scars, hypertrophic scars, atrophic scars, depressed scars, and keloid. These types are primarily characterized by abnormal production of fibroblasts and collagen, as well as the disorderly arrangement of connective tissue. Laser treatment for scars involves the coordinated activation of various signaling pathways and cytokines. However, the exact pathological mechanism for scar formation remains unclear, leading to a lack of radical treatment. Recently, laser treatment has gained popularity as a new minimally invasive approach for scar treatment. The emergence of new theories such as fractional, picosecond laser, and laser-assisted drug delivery has led to continuous advance in laser treatment. Up to now, it has been developed numerous novel treatments, including combined with drug, physical, and other treatments, which have shown superior therapeutic effects. In order to optimize laser treatment in the future, it is crucial to combine new materials with postoperative care. This will help clinicians develop more comprehensive treatment strategies. Therefore, it is important to explore treatment options that have broader applicability.


Asunto(s)
Cicatriz , Queloide , Terapia por Láser , Humanos , Cicatriz/terapia , Terapia por Láser/métodos , Queloide/radioterapia , Queloide/terapia , Cicatriz Hipertrófica/radioterapia , Cicatriz Hipertrófica/terapia
8.
J Transl Med ; 21(1): 600, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674204

RESUMEN

BACKGROUND: A chromobox homologue 3 (CBX3) is elevated in various cancers and significantly contributes to the promotion of malignant behavior; despite this, its exact involvement in clear cell renal cell carcinoma (ccRCC) is yet unknown. METHODS: The Cancer Genome Atlas database served to evaluate CBX3 production and its connection to survival in patients with ccRCC. Our team evaluated the effects of knockdown of CBX3 levels in ccRCC cell populations using in vitro together with in vivo models. CBX3, proteins related to death, and epithelial-to-mesenchymal transition (EMT)-related proteins were measured in ccRCC cells using western blotting and immunohistochemical assays. Through the analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and GeneOntology (GO) and Gene Set Enrichment Analysis (GSEA), the biological processes and signal pathways related to CBX3 expression were identified. Immune-related activity reduced by CBX3 was assessed using various online tools. RESULTS: Both genomic and protein expression showed that CBX3 was upregulated in ccRCC. Further functional analyses revealed that CBX3 played a crucial role in enhancing cell growth, migration, and EMT in vitro along with in vivo. Moreover, the study results provided distinct mechanistic evidence that CBX3 exerts its pathological functions in ccRCC by activating the PI3K/AKT pathway. Finally, immunoassays revealed that CBX3, a possible biomarker of ccRCC, was significantly associated with immunity. CONCLUSIONS: Our results suggest that the overexpression of CBX3 promotes ccRCC advancement through PI3K/AKT activation and even immunological dysregulation, making it a potentially viable and beneficial therapeutic target.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Renales/genética , Proteínas Cromosómicas no Histona/genética
9.
Arch Microbiol ; 205(12): 372, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37934297

RESUMEN

As a natural green additive, gallic acid has been widely used in food production. However, it can inhibit the physiological metabolism of Escherichia coli, which severely limits the ability and efficiency of gallic acid production. To explore the adaptation mechanism of E. coli under gallic acid stress and further explore the target of genetic modification, the effects of gallic acid stress on the fermentation characteristics of E. coli W3110 ATCC (82057) were investigated by cell biomass and cell morphometry. Moreover, transcriptome analysis was used to analyze the gene transcription level of E. coli W3110 ATCC (82057) to explore effects of gallic acid stress on important essential physiological processes. The results showed that under high concentration of gallic acid, the biomass of E. coli W3110 ATCC (82057) decreased significantly and the cells showed irregular morphology. Transcriptome analysis showed that E. coli W3110 ATCC (82057) improved its adaptive capacity through three strategies. First, genes of bamD, ompC, and ompF encoding outer membrane protein BamD, OmpC, and OmpC were decreased 5-, 31.1- and 8.1-fold, respectively, under gallic acid stress compared to the control, leading to the reduction of gallic acid absorption. Moreover, genes (mdtA, mdtB, mdtC, mdtD, mdtE, and mdtF) related to MdtABC multidrug efflux system and multidrug efflux pump MdtEF were up-regulated by1.0-53.0 folds, respectively, and genes (aaeA, aaeB, and aaeX) related to AaeAB efflux system were up-regulated by 8.0-13.3 folds, respectively, which contributed to the excretion of gallic acid. In addition, genes of acid fitness island also were up-regulated by different degrees under the stress of an acidic environment to maintain the stability of the intracellular environment. In conclusion, E. coli W3110 ATCC (82057) would enhance its tolerance to gallic acid by reducing absorption, increasing excretion, and maintaining intracellular environment stability. This study provides research ideas for the construction of engineered strains with high gallic acid yield.


Asunto(s)
Escherichia coli , Transcriptoma , Transporte Biológico , Ácido Gálico , Perfilación de la Expresión Génica
10.
Inorg Chem ; 62(21): 8210-8218, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37194614

RESUMEN

Photodynamic therapy (PDT) uses a combination of photosensitizers (PSs), light sources, and reactive oxygen species (ROS) to damage only the desired target and keep normal tissues from being hurt. The dark cytotoxicity (chemotoxicity) of PSs, leading to whole-body damage in the absence of irradiation, is a major limiting factor in PDT. How to simultaneously increase ROS generation and decrease dark cytotoxicity is an essential challenge that must be resolved in PS research. In this study, a series of homoligand polypyridyl ruthenium complexes (HPRCs) containing three singlet oxygen (1O2)-generating ligands (L) in a single molecule ([Ru(L)3]2+) have been constructed. Compared to the heteroligand complexes [Ru(bpy)2(L)]2+ where bpy is 2,2'-bipyridine, the 1O2 quantum yield under infrared two-photon irradiation and the DNA photocleavage effect of the HPRCs are significantly enhanced with two more ligands L. The intraligand triplet excited states transition played an important role in the activation of oxygen. The HPRCs target the mitochondria but not the nuclei, generating 1O2 intracellularly under irradiation of visible or infrared light. Ru1 exhibits high phototoxicity and low dark cytotoxicity toward human malignant melanoma cells in vitro. Moreover, HPRCs have minimal cytotoxicity to human normal liver cells, suggesting their potential as antitumor PDT reagents with more security. This study may provide inspiration for the structural design of potent PS for PDT.


Asunto(s)
Complejos de Coordinación , Fotoquimioterapia , Rutenio , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Rutenio/farmacología , Rutenio/química , Especies Reactivas de Oxígeno , Complejos de Coordinación/farmacología , Complejos de Coordinación/química
11.
Oral Dis ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098250

RESUMEN

OBJECTIVE: The limited understanding of the molecular mechanism for oral submucosal fibrosis (OSF) poses challenges to the development of effective prevention and treatment strategies. The lack of suitable animal models is a major hindrance. Therefore, this study aimed to address this issue by comparing commonly used arecoline-induced water drinking and injection mouse models. MATERIALS AND METHODS: The mice were subjected to two protocols: receiving 2 mg/mL arecoline in drinking water and 4 mg/mL arecoline saline solution injections every other day. Tissues were collected at regular 4-week intervals, with a final time point of 20 weeks. Stereo microscopy and histomorphological analysis were performed on live and harvested tissues, respectively. RESULTS: During arecoline treatment, collagen deposition and myofibroblast proliferation progressively increased in both models. Changes in the collagen I/III ratio indicated that both models exhibited characteristics of the early and intermediate stages of OSF after 20 weeks of arecoline induction. The water-drinking model also demonstrated multi-organ fibrosis involving the tongue, lungs, and small intestine. CONCLUSION: Both the water drinking and injection mouse models effectively induced OSF, but the water-drinking model better mirrored the observed pathogenesis in patients with OSF. These models provide valuable tools for investigating the mechanisms underlying OSF.

12.
Ecotoxicol Environ Saf ; 267: 115615, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890256

RESUMEN

Polybrominated diphenyl ether flame retardants are known to have adverse effects on the development of organisms. We investigated the molecular mechanisms associated with the developmental hazards of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in zebrafish, as well as the behavioral and morphological alterations involved, focusing on endoplasmic reticulum stress (ERS), oxidative stress, and apoptosis. Our study revealed behavioral alterations in zebrafish exposed to BDE-47, including impaired motor activity, reduced exploration, and abnormal swimming patterns. In addition, we observed malformations in craniofacial regions and other developmental abnormalities that may be associated with ERS-induced cellular dysfunction. BDE-47 exposure showed apparent changes in ERS, oxidative stress, and apoptosis biomarkers at different developmental stages in zebrafish through gene expression analysis and enzyme activity assays. The study indicated that exposure to BDE-47 results in ERS, as supported by the upregulation of ERS-related genes and increased activity of ERS markers. In addition, oxidative stress-related genes showed different expression patterns, suggesting that oxidative stress is involved in the BDE-47 toxic effects. Moreover, an assessment of apoptotic biomarkers revealed an imbalance in the expression levels of pro- and anti-apoptotic genes, suggesting that BDE-47 exposure activated the apoptotic pathway. These results highlight the complex interactions between ERS, oxidative stress, apoptosis, behavioral alterations, and morphological malformations following BDE-47 exposure in zebrafish. Understanding the mechanisms of toxicity of developmental hazards is essential to elucidate the toxicological effects of environmental contaminants. The knowledge can help develop strategies to mitigate their adverse effects on the health of ecosystems and humans.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Éter , Humanos , Animales , Pez Cebra , Ecosistema , Éteres de Etila , Éteres Difenilos Halogenados/toxicidad , Estrés del Retículo Endoplásmico , Biomarcadores
13.
Plant Dis ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700474

RESUMEN

Tilia miqueliana Maxim., a tall deciduous tree in the Malvaceae family, is native to china and is cultivated in the Jiangsu, Zhejiang, Anhui, and Jiangxi provinces as an ornamental plant. T. miqueliana has currently received increased attention because of its value as timber, a source plant for honey, and in formal landscape architecture (Wang et al. 2022). In the last three years, symptoms of leaf spot disease were observed in T. miqueliana fields (9-year-old tree)and a breeding nursery _(1-year-old saplings) in Nanjing, Jiangsu Province, China. Field surveys showed that, the disease incidence was approximately 10% and 40% in the fields and breeding nursery, respectively. Symptoms of leaf spot disease on T. miqueliana appeared as small, circular, or near-circular/irregular black lesions on the upper surfaces of the leaves. As the disease progressed, the spots expanded into irregular shapes with the center turning yellow to black and leaves wilted from margins to centers. In severe cases, the yellow necrotic area extended to the margin, which ultimately led to leaf curling and death. To analyze the presence of the pathogenic microorganism, pieces of leaf at the junction of diseased and healthy tissue (about 3x3 mm) were taken from symptomatic plants, sterilized with 75% ethanol for 1 min and 2% sodium hypochlorite (NaClO) for 2 min, and washed 3 times with ddH2O. The leaf pieces were transferred onto Potato Dextrose Agar (PDA) plates and incubated at 28°C for 3 days in the dark. Colonies were observed and transferred to fresh PDA plates. Sixteen fungal isolates were obtained and one (named D4-2) of them was verified using Koch's assumption. Single spores of D4-2 were cultured in PDA medium, while its initial colony morphology was fluffy white colonies, which then gradually turned dark yellow from the centre to the edge. To further analyze the form of the spores, a hypha was incubated on fresh synthetic low-nutrient agar (SNA) using cellophane and inverted cultivation was performed for 20 days in the dark. Obclavate or obpyriform conidia (10 to 30 × 2 to 18 µm, n=5) were produced in chains and were pale brown to brown in color. The morphology was consistent with that of Alternaria sp.. The molecular identification of the isolated representative fungus D4-2 was conducted via the amplification of the internal transcribed spacer (ITS) (White et al. 1990),translation elongation factor 1 alpha (TEF) (Carbone and Kohn. 1999), glyceraldehyde-3-dehydrogenase (GAPDH) (Berbee et al. 1999) and RNA polymerase II beta subunit (RPB2) using the primer pairs ITS1/ITS4, EF1-728F/EF1-986R, GPD1/GPD2, and RPB2-5F2/fRPB2-7cR (Sung et al. 2007) respectively. All these sequences were deposited in GenBank under accession numbers OP108438 (ITS), OP168372 (RPB2), OQ473880 (TEF), and OP168374 (GAPDH). Based on the GAPDH, RPB2, and TEF regions of D4-2, MEGA-11 was used to construct a neighbor-joining tree (1000 replications) with 31 other known species that had a relatively close evolutionary relationship with species from the Alternaria genus (Woudenberg et al. 2013). The phylogenetic tree indicated 100% bootstrap support between D4-2 and A. alternata. The branches showing the distribution of other species were exactly the same as that of the consensus tree based on the Bayesian 50 % majority rule that represented the Alternaria-complex (Woudenberg et al. 2013). The initial Koch's Postulates was verified using PDA slices with mycelium (pure PDA slices were used as control) that were inverted on the leaves at 25℃ for 3 days before removing slices and observing the phenotype after 7 days. Only leaves infected with D4-2 showed the same symptoms. Moreover, the spore suspension (at a concentration of 107 spores/mL) of D4-2 was applied to the leaves of T. miqueliana seedlings. After 15 days of incubation at 26 ℃ , the leaves showed the same symptoms. Subsequently, the pathogen was reisolated and cultured from these invaded leaves using the same method described above. Morphological and molecular identifications were consistent with those of D4-2. Above all, the pathogenic fungus (D4-2) isolated from T. miqueliana leaves was confirmed to be A. alternata. T. miqueliana is considered to be an endangered species due to the deep dormancy of its seeds that result in a low natural germination rate (Wu and Shen. 2021). At present, research on T. miqueliana mainly focuses on seed germination and breeding technology, and there is hardly any research on the diseases occurring in T. miqueliana. Therefore, we believe that this is the first report of leaf spot disease caused by A. alternata on T. miqueliana in China.

14.
N Engl J Med ; 381(8): 727-738, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31433920

RESUMEN

BACKGROUND: Selinexor, a selective inhibitor of nuclear export compound that blocks exportin 1 (XPO1) and forces nuclear accumulation and activation of tumor suppressor proteins, inhibits nuclear factor κB, and reduces oncoprotein messenger RNA translation, is a potential novel treatment for myeloma that is refractory to current therapeutic options. METHODS: We administered oral selinexor (80 mg) plus dexamethasone (20 mg) twice weekly to patients with myeloma who had previous exposure to bortezomib, carfilzomib, lenalidomide, pomalidomide, daratumumab, and an alkylating agent and had disease refractory to at least one proteasome inhibitor, one immunomodulatory agent, and daratumumab (triple-class refractory). The primary end point was overall response, defined as a partial response or better, with response assessed by an independent review committee. Clinical benefit, defined as a minimal response or better, was a secondary end point. RESULTS: A total of 122 patients in the United States and Europe were included in the modified intention-to-treat population (primary analysis), and 123 were included in the safety population. The median age was 65 years, and the median number of previous regimens was 7; a total of 53% of the patients had high-risk cytogenetic abnormalities. A partial response or better was observed in 26% of patients (95% confidence interval, 19 to 35), including two stringent complete responses; 39% of patients had a minimal response or better. The median duration of response was 4.4 months, median progression-free survival was 3.7 months, and median overall survival was 8.6 months. Fatigue, nausea, and decreased appetite were common and were typically grade 1 or 2 (grade 3 events were noted in up to 25% of patients, and no grade 4 events were reported). Thrombocytopenia occurred in 73% of the patients (grade 3 in 25% and grade 4 in 33%). Thrombocytopenia led to bleeding events of grade 3 or higher in 6 patients. CONCLUSIONS: Selinexor-dexamethasone resulted in objective treatment responses in patients with myeloma refractory to currently available therapies. (Funded by Karyopharm Therapeutics; STORM ClinicalTrials.gov number, NCT02336815.).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Dexametasona/administración & dosificación , Hidrazinas/administración & dosificación , Carioferinas/antagonistas & inhibidores , Mieloma Múltiple/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Triazoles/administración & dosificación , Administración Oral , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Biomarcadores de Tumor/sangre , Dexametasona/efectos adversos , Esquema de Medicación , Resistencia a Antineoplásicos , Femenino , Humanos , Hidrazinas/efectos adversos , Análisis de Intención de Tratar , Masculino , Persona de Mediana Edad , Análisis de Supervivencia , Trombocitopenia/inducido químicamente , Triazoles/efectos adversos , Adulto Joven , Proteína Exportina 1
15.
Mol Biol Rep ; 49(10): 9137-9145, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36057879

RESUMEN

BACKGROUND: The PAX3 (paired box gene 3) gene is highly expressed in several cancer types. However, its underlying mechanism of action in skin cutaneous melanoma (SKCM) remains unknown. METHODS: In this study, we used the GEPIA database and western blotting to analyze the expression of PAX3. We performed the Kaplan-Meier survival analysis to evaluate the prognostic value of PAX3 in SKCM. Next, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to evaluate the function of PAX3-related co-expressed genes. Additionally, the function and potential mechanism of action of PAX3 in SKCM were studied through functional experiments. Western blotting was used to detect the changes in the levels of epithelial-mesenchymal transition (EMT)-related and MET (c-MET tyrosine kinase) proteins following PAX3 knockdown. Finally, we assessed the correlation between PAX3 expression and the infiltration of CD4+/CD8+ T cells using the TISIDB database. RESULTS: We found that PAX3 was overexpressed in the SKCM tissues and that these levels were indicative of a poor prognosis of SKCM. The KEGG pathway enrichment analysis showed that PAX3-related co-expressed genes were mainly associated with the oncogenic pathways. Knocking down PAX3 significantly inhibited the proliferation, invasion, and migration of SK-MEL-28 cells. The PAX3 expression was related significantly to the immune infiltration level of CD4+/CD8+ T cells. CONCLUSIONS: Our findings demonstrated that PAX3 knockdown could reverse the EMT of tumor cells, inhibit the growth, and progression of SKCM cells. Therefore, PAX3 may have implications as a potential therapeutic target and promising prognostic biomarker for SKCM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Biomarcadores , Linfocitos T CD8-positivos , Regulación hacia Abajo/genética , Humanos , Melanoma/patología , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Neoplasias Cutáneas/metabolismo , Melanoma Cutáneo Maligno
16.
Mol Biol Rep ; 49(9): 8241-8250, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35925486

RESUMEN

BACKGROUND: The glycolytic enzyme, α-Enolase (ENO1), catalyzes the production of phosphoenolpyruvate from 2-phosphoglycerate, thereby enhancing glycolysis and contributing to tumor progression. In the present study, we aimed to determine the role of ENO1 in skin cutaneous melanoma (SKCM) and the potential underlying mechanism. METHODS: The Sangerbox database was used to analyze the mRNA expression of ENO1 in SKCM. Western blotting was used to assess the levels of ENO1, c-Myc, ß-catenin, MMP-9, PGAM1, and MMP-13 in SKCM-derived cell lines or tumor tissues from patients with SKCM. The pCMV-SPORT6-ENO1 and pET-28a-ENO1siRNA plasmids were used to overexpress and knockdown ENO1 in SKCM cells, respectively. To determine the function of ENO1 in the malignant behavior of SKCM cells, we performed a wound-healing assay, cell counting kit 8 assay, and transwell chamber analyses. The production of pyruvate and lactic acid in tumor cells was evaluated using their respective kits. RESULTS: Compared with non-tumor tissues, ENO1 was found to be overexpressed in SKCM tissues. In SKCM cells, ENO1 overexpression promoted invasion, migration, and proliferation of tumor cells; increased pyruvate and lactate production; and increased ß-catenin, MMP-9, MMP-13, and c-Myc levels. The opposite effects were observed in SKCM cells silenced for ENO1. CONCLUSIONS: These results indicate that ENO1 is involved in SKCM progression by enhancing the invasion and proliferation of tumor cells. In addition, ENO1 might have an important function in tumor cell glycolysis. Therefore, ENO1 represents a potential therapeutic target for treatment of SKCM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Apoptosis/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 9 de la Matriz , Melanoma/genética , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Piruvatos , Neoplasias Cutáneas/genética , beta Catenina/genética , Melanoma Cutáneo Maligno
17.
Anim Genet ; 53(2): 193-202, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34963194

RESUMEN

Variations in the Y-chromosome are usually correlated with male-specific traits. However, this condition has been described only sporadically, even in human genetics. The present study was conducted to clone the full-length gene sequence of ovine DEAD-box helicase 3, Y-linked (DDX3Y), and investigate the effect of the expression and variation of DDX3Y on the reproductive traits of Hu sheep. Consequently, we identified the full coding sequence and genomic sequence of ovine DDX3Y. Quantitative PCR (qPCR) analysis showed that ovine DDX3Y was highly expressed in testis, and the expression level increased during testicular development. Furthermore, individuals with larger testis at 6 months expressed significantly more DDX3Y mRNA in the testis than individuals with smaller testis. Notably, a novel SNP (g. 12657 C>A) in the 3' untranslated region was identified in Hu sheep and Tan sheep according to the investigation of the full DDX3Y genomic sequence of 1069 individuals from nine sheep breeds. Association analysis revealed that the SNP was significantly related to testis size in Hu sheep. Meanwhile, Hu rams with the derived C allele showed significantly higher expression levels of DDX3Y in testis than those with the ancestral A allele. In addition, data mining in a previous study showed that the C allele cosegregated with the globally major Y-chromosomal haplogroups y-HA and y-HC, and the A allele is found in all rams with haplogroups y-HB1, y-HB2 and y-HD. This study suggests that the association of the Y-chromosomal haplogroups with testis size in Hu sheep can be extrapolated to the sheep population worldwide.


Asunto(s)
ARN Helicasas DEAD-box , Testículo , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/farmacología , Expresión Génica , Masculino , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/farmacología , Mutación , Ovinos/genética , Testículo/metabolismo
18.
Chem Biodivers ; 19(10): e202200728, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36056470

RESUMEN

Solidago canadensis L., native to North America, is now an invasive plant worldwide. Its abundant seeds, rapid vegetative reproduction ability, and allelopathy to other plants are the main reasons for its successful invasion. It has negative impacts on the ecological environment of the invaded area and causes a reduction in local biodiversity and economic losses of agriculture and stock farming. Each part of the plant contains a variety of allelochemicals (terpenoids, phenolics, and flavonoids), including a large number of essential oil components. These allelochemicals can be released in various ways to inhibit the growth of adjacent plants and promote their invasion; they can also affect soil properties and soil microorganisms. This article summarizes the allelopathic effects of S. canadensis on other plant species and the interaction mechanism between it and the ecosystem.


Asunto(s)
Aceites Volátiles , Solidago , Alelopatía , Ecosistema , Especies Introducidas , Suelo/química , Feromonas/farmacología , Flavonoides , Terpenos
19.
Angew Chem Int Ed Engl ; 61(38): e202208721, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35906932

RESUMEN

A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800-900 nm have been designed. The amphiphilic complex Ru3 containing tert-butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low-power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low-power IR-driven dual PDT/PTT drugs.


Asunto(s)
Melanoma , Fotoquimioterapia , Rutenio , Línea Celular Tumoral , Humanos , Rayos Láser , Melanoma/tratamiento farmacológico , Mitocondrias , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Terapia Fototérmica , Rutenio/farmacología
20.
Exp Cell Res ; 386(2): 111734, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31770533

RESUMEN

BACKGROUND: The molecular mechanisms of abnormal palatogenesis were investigated in this study. A key regulator, miR-106a-5p, and its target pathway were analyzed. OBJECTIVES: This research is trying to clarify the underlying mechanism of the modulation of miRNA transcription during the formation of cleft palate by 7T and 9.4T NMR metabolomic platforms. METHOD: Differentially expressed miRNAs and mRNAs were analyzed by microarray analysis and verified by qRT-PCR. The protein expression in TGFß signaling pathways were analyzed by Western Blotting. The relationship between miR-106a-5p and TGFß were analyzed by luciferase reporter assay. Cell apoptosis were analyzed by flow cytometer. And finally, the metabonomics were analyzed by NMR and multivariate data analysis models (MVDA). RESULTS: The expression of miR-106a-5p increased in cleft palatal tissue and negatively correlated with the protein level of Tgfbr2. The luciferase assay further proved that the tgfbr2 was a direct target of miR-106a-5p. In another aspect, miR-106a-5p increased apoptosis level in palatal mesenchymal cells, possibly because its inhibition of TGFß signaling pathway. Moreover, low cholesterol and choline levels with high citric acid and lipid levels were observed by 7T and 9.4T NMR metabonomic analysis, which inferred the disorder of cell membrane synthesis in cleft palate formation. Furthermore, transformation from choline to phosphatidylcholine regulated by miR-106a-5p was also disrupted, resulting in phosphatidic choline synthesis disorder and reduced cell membrane synthesis. CONCLUSIONS: The regulatory mechanism of cleft palate was studied at transcriptional and metabolomics levels, which may provide important information in understanding the primary cause of this abnormality.


Asunto(s)
Fisura del Paladar/genética , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Hueso Paladar/efectos de los fármacos , Proteína Smad2/genética , Factor de Crecimiento Transformador beta/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ácido Cítrico/metabolismo , Fisura del Paladar/inducido químicamente , Fisura del Paladar/metabolismo , Fisura del Paladar/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Metaboloma/genética , Ratones , MicroARNs/clasificación , MicroARNs/metabolismo , Hueso Paladar/crecimiento & desarrollo , Hueso Paladar/metabolismo , Hueso Paladar/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Transcriptoma , Factor de Crecimiento Transformador beta/metabolismo , Tretinoina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA