RESUMEN
Transcriptional factors (TFs) act as key determinants of cell death and survival by differentially modulating gene expression. Here, we identified many TFs, including TEAD4, that form condensates in stressed cells. In contrast to YAP-induced transcription-activating condensates of TEAD4, we found that co-factors such as VGLL4 and RFXANK alternatively induced repressive TEAD4 condensates to trigger cell death upon glucose starvation. Focusing on VGLL4, we demonstrated that heterotypic interactions between TEAD4 and VGLL4 favor the oligomerization and assembly of large TEAD4 condensates with a nonclassical inhibitory function, i.e., causing DNA/chromatin to be aggregated and entangled, which eventually impede gene expression. Based on these findings, we engineered a peptide derived from the TEAD4-binding motif of VGLL4 to selectively induce TEAD4 repressive condensation. This "glue" peptide displayed a strong antitumor effect in genetic and xenograft mouse models of gastric cancer via inhibition of TEAD4-related gene transcription. This new type of repressive TF phase separation exemplifies how cofactors can orchestrate opposite functions of a given TF, and offers potential new antitumor strategies via artificial induction of repressive condensation.
RESUMEN
The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.
Asunto(s)
Disulfiram , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Disulfiram/farmacología , Línea Celular Tumoral , Animales , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento de Hepatocito/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genéticaRESUMEN
IFN-γ is a pleiotropic cytokine that plays a controversial role in regulatory T cell (Treg) activity. In this study, we sought to understand how IFN-γ receptor (IFN-γR) signaling affects donor Tregs following allogeneic hematopoietic cell transplant (allo-HCT), a potentially curative therapy for leukemia. We show that IFN-γR signaling inhibits Treg expansion and conversion of conventional T cells (Tcons) to peripheral Tregs in both mice and humans. Mice receiving IFN-γR-deficient allo-HCT showed markedly reduced graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects, a trend associated with increased frequencies of Tregs, compared with recipients of wild-type allo-HCT. In mice receiving Treg-depleted allo-HCT, IFN-γR deficiency-induced peripheral Treg conversion was effective in preventing persistent GVHD while minimally affecting GVL effects. Thus, impairing IFN-γR signaling in Tcons may offer a promising strategy for achieving GVL effects without refractory GVHD. Similarly, in a human PBMC-induced xenogeneic GVHD model, significant inhibition of GVHD and an increase in donor Tregs were observed in mice cotransferred with human CD4 T cells that were deleted of IFN-γR1 by CRISPR/Cas9 technology, providing proof-of-concept support for using IFN-γR-deficient T cells in clinical allo-HCT.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia , Ratones , Humanos , Animales , Linfocitos T Reguladores , Trasplante Homólogo , Leucocitos Mononucleares , Ratones NoqueadosRESUMEN
Photoperiod is an important environmental cue. Plants can distinguish the seasons and flower at the right time through sensing the photoperiod. Soybean is a sensitive short-day crop, and the timing of flowering varies greatly at different latitudes, thus affecting yields. Soybean cultivars in high latitudes adapt to the long day by the impairment of two phytochrome genes, PHYA3 and PHYA2, and the legume-specific flowering suppressor, E1. However, the regulating mechanism underlying phyA and E1 in soybean remains largely unknown. Here, we classified the regulation of the E1 family by phyA2 and phyA3 at the transcriptional and posttranscriptional levels, revealing that phyA2 and phyA3 regulate E1 by directly binding to LUX proteins, the critical component of the evening complex, to regulate the stability of LUX proteins. In addition, phyA2 and phyA3 can also directly associate with E1 and its homologs to stabilize the E1 proteins. Therefore, phyA homologs control the core flowering suppressor E1 at both the transcriptional and posttranscriptional levels, to double ensure the E1 activity. Thus, our results disclose a photoperiod flowering mechanism in plants by which the phytochrome A regulates LUX and E1 activity.
Asunto(s)
Fotoperiodo , Fitocromo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismoRESUMEN
Spatiotemporal optical vortices (STOVs) with swirling phase singularities in space and time hold great promise for a wide range of applications across diverse fields. However, current approaches to generate STOVs lack integrability and rely on bulky free-space optical components. Here, we demonstrate routine STOV generation by harnessing the topological darkness phenomenon of a photonic crystal slab. Complete polarization conversion enforced by symmetry enables topological darkness to arise from photonic bands of guided resonances, imprinting vortex singularities onto an ultrashort reflected pulse. Utilizing time-resolved spatial mapping, we provide the first observation of STOV generation using a photonic crystal slab, revealing the imprinted STOV structure manifested as a curved vortex line in the pulse profile in space and time. Our work establishes photonic crystal slabs as a versatile and accessible platform for engineering STOVs and harnessing the topological darkness in nanophotonics.
RESUMEN
Human programmed cell death protein 1 (hPD-1) is an essential receptor in the immune checkpoint pathway. It has played an important role in cancer therapy. However, not all patients respond positively to the PD-1 antibody treatment, and the underlying mechanism remains unknown. PD-1 is a transmembrane glycoprotein, and its extracellular domain (ECD) is reported to be responsible for interactions and signal transduction. This domain contains 4 N-glycosylation sites and 25 potential O-glycosylation sites, which implicates the importance of glycosylation. The structure of hPD-1 has been intensively studied, but the glycosylation of this protein, especially the glycan on each glycosylation site, has not been comprehensively illustrated. In this study, hPD-1 ECD expressed by human embryonic kidney 293 (HEK 293) and Chinese hamster ovary (CHO) cells was analyzed; not only N- and O-glycosylation sites but also the glycans on these sites were comprehensively analyzed using mass spectrometry. In addition, hPD-1 ECD binding to different anti-hPD-1 antibodies was tested, and N-glycans were found functioned differently. All of this glycan information will be beneficial for future PD-1 studies.
Asunto(s)
Cricetulus , Glicómica , Polisacáridos , Receptor de Muerte Celular Programada 1 , Humanos , Glicosilación , Células CHO , Animales , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/química , Células HEK293 , Polisacáridos/metabolismo , Polisacáridos/química , Polisacáridos/análisis , Glicómica/métodos , Proteómica/métodos , Dominios Proteicos , Glicoproteínas/metabolismo , Glicoproteínas/química , Unión ProteicaRESUMEN
Cytokine release syndrome (CRS) is a great challenge for the application of anti-CD19 CAR-T cell therapy. The aim of this study was to investigate the effect of knocking down interferon gamma (IFN-γ) by shRNA as a potential strategy to reduce the cytokine storms. A newly designed short hairpin interference RNA of IFN-γ (shIFN-γ) in CD19CAR gene was constructed. Several cellular model systems of approach using Nalm-6 cell lines including Nalm-6CD19pos and Nalm-6CD19neg with or without monocytes and endothelial cells were used to analyze the different levels of cytokines after shIFN-γ-anti-CD19CAR-T cell targeted therapy. The activity of this novel CD19CAR-T was evaluated both in vitro and in NSG mouse model. The killing efficacy of shIFN-γ-anti-CD19CAR-T at the E:T ratio of 2:1 was similar to that of regular anti-CD19CAR-T at the E:T ratio of 1:1. The IFN-γ level in the shIFN-γ-anti-CD19CAR-T cell group was (2673.1 ± 307.4) pg/ml at the E:T ratio of 2:1 which was significantly lower than that ((8261.5 ± 345.5) pg/ml) in the regular anti-CD19CAR-T group at the E:T ratio of 1:1. Cytotoxicity experiments in vitro showed significantly reduced concentrations of IFN-γ, IL-6 and TNFα in the shIFN-γ-anti-CD19CAR-T cell group compared to regular anti-CD19CAR-T cell group. Both regular anti-CD19CAR and shIFN-γ-CD19CAR-T exerted bystander killing effect in vitro. We conclude that shIFN-γ-anti-CD19CAR-T cells can reduce the generation of cytokine storms without significantly compromising their therapeutic efficacy in the preclinical setting. In mouse model, 3 × 106 shIFN-γ-anti-CD19CAR-T cells/mouse generated the similar killing efficacy to that with 2 × 106 regular anti-CD19CAR-T cells/mouse.
Asunto(s)
Citocinas , Interferón gamma , Animales , Ratones , Citocinas/genética , Interferón gamma/genética , Síndrome de Liberación de Citoquinas , Células Endoteliales , ApoptosisRESUMEN
The Hippo-YAP signaling pathway plays an essential role in epithelial cells during intestinal regeneration and tumorigenesis. However, the molecular mechanism linking stromal signals to YAP-mediated intestinal regeneration and tumorigenesis is poorly defined. Here, we report a stroma-epithelium ISLR-YAP signaling axis essential for stromal cells to modulate epithelial cell growth during intestinal regeneration and tumorigenesis. Specifically, upon inflammation and in cancer, an oncogenic transcription factor ETS1 in stromal cells induces expression of a secreted protein ISLR that can inhibit Hippo signaling and activate YAP in epithelial cells. Deletion of Islr in stromal cells in mice markedly impaired intestinal regeneration and suppressed tumorigenesis in the colon. Moreover, the expression of stromal cell-specific ISLR and ETS1 significantly increased in inflamed mucosa of human IBD patients and in human colorectal adenocarcinoma, accounting for the epithelial YAP hyperactivation. Collectively, our findings provide new insights into the signaling crosstalk between stroma and epithelium during tissue regeneration and tumorigenesis.
Asunto(s)
Neoplasias Colorrectales/metabolismo , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Animales , Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Células HCT116 , Células HEK293 , Células HT29 , Vía de Señalización Hippo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/metabolismo , Masculino , Ratones , Mutación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de SeñalRESUMEN
Due to their unique advantages, single atoms and clusters of transition metals are expected to achieve a breakthrough in catalytic activity, but large-scale production of active materials remains a challenge. In this work, a simple solvent-free one-step annealing method is developed and applied to construct diatomic and cluster active sites in activated carbon by utilizing the strong anchoring ability of phenanthroline to metal ions, which can be scaled for mass productions. Benefiting from the synergy between the different metals, the obtained sub-nano-bimetallic atom-cluster catalysts (FeNiAC -NC) exhibit high oxygen reduction reactions (ORR) activity (E1/2 = 0.936 V vs. RHE) and a small ORR/oxygen evolution reaction (OER) potential gap of only 0.594 V. An in-house pouch Zn-air battery is assembled using an FeNiAC -NC catalyst, which demonstrates a stability of 1000 h, outperforming previous reports. The existence of clusters and their effects on catalytic activity is analyzed by density functional theory calculations to reveal the chemistry of nano-bimetallic atom-cluster catalysts.
RESUMEN
Giredestrant is a potent and selective small-molecule estrogen receptor degrader. The objectives of this study were to assess the absolute bioavailability (aBA) of giredestrant and to determine the mass balance, routes of elimination, and metabolite profile of [14C]giredestrant. In part 1 (mass balance), a single 30.8-mg oral dose of [14C]giredestrant (105 µCi) was administered to women of nonchildbearing potential (WNCBP; n = 6). The mean recovery of total radioactivity in excreta was 77.0%, with 68.0% of the dose excreted in feces and 9.04% excreted in urine over a 42-day sample collection period. The majority of the circulating radioactivity (56.8%) in plasma was associated with giredestrant. Giredestrant was extensively metabolized, with giredestrant representing only 20.0% and 1.90% of the dose in feces and urine, respectively. All metabolites in feces resulted from oxidative metabolism and represented 44.7% of the dose. In part 2 (aBA), WNCBP (n = 10) received an oral (30-mg capsule) or intravenous (30-mg solution) dose of giredestrant. The aBA of giredestrant after oral administration was 58.7%. Following the intravenous dose, giredestrant had a plasma clearance and volume of distribution of 5.31 L/h and 266 L, respectively. In summary, giredestrant was well tolerated, rapidly absorbed, and showed moderate oral bioavailability with low recovery of the dose as parent drug in excreta. Oxidative metabolism followed by excretion in feces was identified as the major route of elimination of giredestrant. SIGNIFICANCE STATEMENT: This study provides definitive insight into the absorption, distribution, metabolism, and excretion of giredestrant in humans. The results show that giredestrant exhibits low clearance, a high volume of distribution, and moderate oral bioavailability in humans. In addition, the data show that oxidative metabolism followed by excretion in feces is the primary elimination route of giredestrant in humans. These results will be used to further inform the clinical development of giredestrant.
Asunto(s)
Disponibilidad Biológica , Heces , Voluntarios Sanos , Humanos , Femenino , Adulto , Heces/química , Administración Oral , Adulto Joven , Redes y Vías Metabólicas , Persona de Mediana EdadRESUMEN
Light functions as the primary environmental stimulus and brassinosteroids (BRs) as important endogenous growth regulators throughout the plant lifecycle. Photomorphogenesis involves a series of vital developmental processes that require the suppression of BR-mediated seedling growth, but the mechanism underlying the light-controlled regulation of the BR pathway remains unclear. Here, we reveal that nuclear factor YC proteins (NF-YCs) function as essential repressors of the BR pathway during light-controlled hypocotyl growth in Arabidopsis thaliana. In the light, NF-YCs inhibit BR biosynthesis by directly targeting the promoter of the BR biosynthesis gene BR6ox2 and repressing its transcription. NF-YCs also interact with BIN2, a critical repressor of BR signaling, and facilitate its stabilization by promoting its Tyr200 autophosphorylation, thus inhibiting the BR signaling pathway. Consistently, loss-of-function mutants of NF-YCs show etiolated growth and constitutive BR responses, even in the light. Our findings uncover a dual role of NF-YCs in repressing BR biosynthesis and signaling, providing mechanistic insights into how light antagonizes the BR pathway to ensure photomorphogenic growth in Arabidopsis.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Hipocótilo/metabolismo , Hipocótilo/fisiología , Transducción de Señal/fisiologíaRESUMEN
The migration of trees induced by climatic warming has been observed at many alpine treelines and boreal-tundra ecotones, but the migration of temperate trees into southern boreal forest remains less well documented. We conducted a field investigation across an ecotone of temperate and boreal forests in northern Greater Khingan Mountains of northeast China. Our analysis demonstrates that Mongolian oak (Quercus mongolica), an important temperate tree species, has migrated rapidly into southern boreal forest in synchrony with significant climatic warming over the past century. The average rate of migration is estimated to be 12.0 ± 1.0 km decade-1 , being slightly slower than the movement of isotherms (14.7 ± 6.4 km decade-1 ). The migration rate of Mongolian oak is the highest observed among migratory temperate trees (average rate 4.0 ± 1.0 km decade-1 ) and significantly higher than the rates of tree migration at boreal-tundra ecotones (0.9 ± 0.4 km decade-1 ) and alpine treelines (0.004 ± 0.003 km decade-1 ). Compared with the coexisting dominant boreal tree species, Dahurian larch (Larix gmelinii), temperate Mongolian oak is observed to have significantly lower capacity for light acquisition, comparable water-use efficiency but stronger capacity to utilize nutrients especially the most limiting nutrient, nitrogen. In the context of climatic warming, and in addition to a high seed dispersal capacity and potential thermal niche differences, the advantage of nutrient utilization, reflected by foliar elementomes and stable nitrogen isotope ratios, is also likely a key mechanism for Mongolian oak to coexist with Dahurian larch and facilitate its migration toward boreal forest. These findings highlight a rapid deborealization of southern Asian boreal forest in response to climatic warming.
Asunto(s)
Larix , Quercus , Taiga , Árboles/fisiología , Tundra , Nitrógeno , Larix/fisiología , BosquesRESUMEN
In this work, we propose a design method of the narrow passband filter with a high Q-factor based on a Fano resonance. A single-layer metallic frequency selective surface (FSS) with a simple structure is first designed according to this idea, but the result is not satisfying since the filter transmittance will significantly decrease with the increase of the Q-factor due to the presence of an inherent ohmic damping. Further, to improve the design, a ceramic-based FSS filter based on the similar mechanism is proposed, and the requirements of the ultrahigh Q-factors can be met owing to the high permittivity and low loss tangent of microwave ceramics. The design strategy proposed in this paper may have a promising potential in modern wireless communication and related fields.
RESUMEN
Corneal injury leads to impaired normal structure of the cornea. Improving the wound healing process in epithelial cells significantly contributes to ocular damage treatments. Here, we aimed to investigate the potential mechanisms of nitric oxide (NO) and its mediator, inducible nitric oxide synthase (iNOS), in the process of corneal wound healing. We established a corneal injury model of iNOS-/- mice, and treated human corneal epithelial cell lines (HCE-2) with the iNOS inhibitor L-INL, with or without NO replenishment by supplying sodium nitroferricyanide dihydrate (SNP). Our findings showed that inhibition of NO/iNOS accelerated corneal repair, enhanced uPAR (a receptor protein indicating the migration ability), and improved epithelial cell migration. Furthermore, NO/iNOS ablation activated Akt phosphorylation, reduced neutrophil marker protein MPO expression, and downregulated the transcription of inflammation cytokines CXCL-1, CXCL-2, IL-1ß, IL-6, and TNF-α. However, the protective effects of NO/iNOS inhibition are significantly reduced by NO replenishment when treated with SNP. Therefore, we confirmed that inhibiting NO/iNOS improved the corneal wound healing by facilitating epithelial cell migration and reducing inflammatory reactions, which might be related to the activation of the Akt signaling pathway.
Asunto(s)
Movimiento Celular , Lesiones de la Cornea , Modelos Animales de Enfermedad , Epitelio Corneal , Óxido Nítrico Sintasa de Tipo II , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Cicatrización de Heridas , Animales , Humanos , Masculino , Ratones , Western Blotting , Movimiento Celular/fisiología , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Epitelio Corneal/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Cicatrización de Heridas/fisiologíaRESUMEN
In recent years, spatial transcriptomics (ST) research has become a popular field of study and has shown great potential in medicine. However, there are few bibliometric analyses in this field. Thus, in this study, we aimed to find and analyze the frontiers and trends of this medical research field based on the available literature. A computerized search was applied to the WoSCC (Web of Science Core Collection) Database for literature published from 2006 to 2023. Complete records of all literature and cited references were extracted and screened. The bibliometric analysis and visualization were performed using CiteSpace, VOSviewer, Bibliometrix R Package software, and Scimago Graphica. A total of 1467 papers and reviews were included. The analysis revealed that the ST publication and citation results have shown a rapid upward trend over the last 3 years. Nature Communications and Nature were the most productive and most co-cited journals, respectively. In the comprehensive global collaborative network, the United States is the country with the most organizations and publications, followed closely by China and the United Kingdom. The author Joakim Lundeberg published the most cited paper, while Patrik L. Ståhl ranked first among co-cited authors. The hot topics in ST are tissue recognition, cancer, heterogeneity, immunotherapy, differentiation, and models. ST technologies have greatly contributed to in-depth research in medical fields such as oncology and neuroscience, opening up new possibilities for the diagnosis and treatment of diseases. Moreover, artificial intelligence and big data drive additional development in ST fields.
Asunto(s)
Bibliometría , Transcriptoma , Humanos , Transcriptoma/genética , Publicaciones , AnimalesRESUMEN
Nitrogen (N) and phosphorus (P) are the two most important macronutrients supporting forest growth. Unprecedented urbanization has created growing areas of urban forests that provide key ecosystem services for city dwellers. However, the large-scale patterns of soil N and P content remain poorly understood in urban forests. Based on a systematic soil survey in urban forests from nine large cities across eastern China, we examined the spatial patterns and key drivers of topsoil (0-20 cm) total N content, total P content, and N:P ratio. Topsoil total N content was found to change significantly with latitude in the form of an inverted parabolic curve, while total P content showed an opposite latitudinal pattern. Variance partition analysis indicated that regional-scale patterns of topsoil total N and P contents were dominated by climatic drivers and partially regulated by time and pedogenic drivers. Conditional regression analyses showed a significant increase in topsoil total N content with lower mean annual temperature (MAT) and higher mean annual precipitation (MAP), while topsoil total P content decreased significantly with higher MAP. Topsoil total N content also increased significantly with the age of urban park and varied with pre-urban soil type, while no such effects were found for topsoil total P content. Moreover, topsoil N:P ratio showed a latitudinal pattern similar to that of topsoil total N content and also increased significantly with lower MAT and higher MAP. Our findings demonstrate distinct latitudinal trends of topsoil N and P contents and highlight a dominant role of climatic drivers in shaping the large-scale patterns of topsoil nutrients in urban forests.
Asunto(s)
Ecosistema , Fósforo , Fósforo/análisis , Nitrógeno/análisis , Carbono/análisis , Bosques , China , SueloRESUMEN
The discovery and development of CDK2 inhibitors has currently been validated as a hot topic in cancer therapy. Herein, a series of novel N-(pyridin-3-yl)pyrimidin-4-amine derivatives were designed and synthesized as potent CDK2 inhibitors. Among them, the most promising compound 7l presented a broad antiproliferative efficacy toward diverse cancer cells MV4-11, HT-29, MCF-7, and HeLa with IC50 values of 0.83, 2.12, 3.12, and 8.61 µM, respectively, which were comparable to that of Palbociclib and AZD5438. Interestingly, these compounds were less toxic on normal embryonic kidney cells HEK293 with high selectivity index. Further mechanistic studies indicated 7l caused cell cycle arrest and apoptosis on HeLa cells in a concentration-dependent manner. Moreover, 7l manifested potent and similar CDK2/cyclin A2 nhibitory activity to AZD5438 with an IC50 of 64.42 nM. These findings revealed that 7l could serve as ahighly promisingscaffoldfor CDK2 inhibitors as potential anticancer agents and functional probes.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Quinasa 2 Dependiente de la Ciclina , Relación Estructura-Actividad , Línea Celular Tumoral , Células HeLa , Aminas/farmacología , Células HEK293 , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Proliferación Celular , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias/tratamiento farmacológicoRESUMEN
Skin wound infection has become a notable medical threat. Herein, the polysaccharide-based injectable hydrogels with multifunctionality were developed by a simple and fast gelation process not only to inactivate bacteria but also to accelerate bacteria-infected wound healing. Sodium nitroprusside (SNP) loaded PCN-224 nanoparticles were introduced into the polymer matrix formed by the dynamic and reversible coordinate bonds between Ag+ with carboxyl and amino or hydroxyl groups on carboxymethyl chitosan (CMCS), hydrogen bonds and electrostatic interactions in the polymer to fabricate SNP@PCN@Gel hydrogels. SNP@PCN@Gel displayed interconnected porous structure, excellent self-healing capacity, low cytotoxicity, good blood compatibility, and robust antibacterial activity. SNP@PCN@Gel could produce reactive oxygen species (ROS) and NO along with Fe2+, and showed long-term sustained release of Ag+, thereby effectively killing bacteria by synergistic photothermal (hyperthermia), photodynamic (ROS), chemodynamic (Fenton reaction), gas (NO) and ion (Ag+ and -NH3+ in CMCS) therapy. Remarkably, the hydrogels significantly promoted granulation tissue formation, reepithelization, collagen deposition and angiogenesis as well as wound contraction in bacteria-infected wound healing. Taken together, the strategy represented a general method to engineer the unprecedented photoactivatable "all-in-one" hydrogels with enhanced antibacterial activity and paved a new way for development of antibiotic alternatives and wound dressing.
Asunto(s)
Antibacterianos , Quitosano , Hidrogeles , Cicatrización de Heridas , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Animales , Nitroprusiato/farmacología , Nitroprusiato/química , Ratones , Especies Reactivas de Oxígeno/metabolismo , Humanos , Plata/química , Plata/farmacología , Nanopartículas/química , Infección de Heridas/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacosRESUMEN
The identification and management of biofouling remain pressing challenges in marine and freshwater ecosystems, with significant implications for environmental sustainability and industrial operations. This comprehensive review synthesizes the current state-of-the-art in biofouling identification technologies, examining eight prominent methodologies: Microscopy Examination, Molecular Biology, Remote Sensing, Community Involvement, Ecological Methods, Artificial Intelligence, Chemical Analysis, and Macro Photography. Each method is evaluated for its respective advantages and disadvantages, considering factors such as precision, scalability, cost, and data quality. Furthermore, the review identifies current obstacles that inhibit the optimal utilization of these technologies, ranging from technical limitations and high operational costs to issues of data inconsistency and subjectivity. Finally, the review posits a future outlook, advocating for the development of integrated, standardized systems that amalgamate the strengths of individual approaches. Such advancement will pave the way for more effective and sustainable strategies for biofouling identification and management.
Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Biopelículas , Ecosistema , Inteligencia ArtificialRESUMEN
Spatiotemporal forecasting in various domains, like traffic prediction and weather forecasting, is a challenging endeavor, primarily due to the difficulties in modeling propagation dynamics and capturing high-dimensional interactions among nodes. Despite the significant strides made by graph-based networks in spatiotemporal forecasting, there remain two pivotal factors closely related to forecasting performance that need further consideration: time delays in propagation dynamics and multi-scale high-dimensional interactions. In this work, we present a Series-Aligned Multi-Scale Graph Learning (SAMSGL) framework, aiming to enhance forecasting performance. In order to handle time delays in spatial interactions, we propose a series-aligned graph convolution layer to facilitate the aggregation of non-delayed graph signals, thereby mitigating the influence of time delays for the improvement in accuracy. To understand global and local spatiotemporal interactions, we develop a spatiotemporal architecture via multi-scale graph learning, which encompasses two essential components: multi-scale graph structure learning and graph-fully connected (Graph-FC) blocks. The multi-scale graph structure learning includes a global graph structure to learn both delayed and non-delayed node embeddings, as well as a local one to learn node variations influenced by neighboring factors. The Graph-FC blocks synergistically fuse spatial and temporal information to boost prediction accuracy. To evaluate the performance of SAMSGL, we conduct experiments on meteorological and traffic forecasting datasets, which demonstrate its effectiveness and superiority.