Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Cell ; 152(5): 1021-36, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452851

RESUMEN

Histone modifications regulate chromatin-dependent processes, yet the mechanisms by which they contribute to specific outcomes remain unclear. H3K4me3 is a prominent histone mark that is associated with active genes and promotes transcription through interactions with effector proteins that include initiation factor TFIID. We demonstrate that H3K4me3-TAF3 interactions direct global TFIID recruitment to active genes, some of which are p53 targets. Further analyses show that (1) H3K4me3 enhances p53-dependent transcription by stimulating preinitiation complex (PIC) formation; (2) H3K4me3, through TAF3 interactions, can act either independently or cooperatively with the TATA box to direct PIC formation and transcription; and (3) H3K4me3-TAF3/TFIID interactions regulate gene-selective functions of p53 in response to genotoxic stress. Our findings indicate a mechanism by which H3K4me3 directs PIC assembly for the rapid induction of specific p53 target genes.


Asunto(s)
Código de Histonas , Histonas/metabolismo , Factor de Transcripción TFIID/metabolismo , Iniciación de la Transcripción Genética , Línea Celular Tumoral , Humanos , Lisina/metabolismo , Metilación , TATA Box , Factores Asociados con la Proteína de Unión a TATA , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Factores de Transcripción p300-CBP/metabolismo
3.
Cell ; 154(2): 297-310, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870121

RESUMEN

The H3K4me3 mark in chromatin is closely correlated with actively transcribed genes, although the mechanisms involved in its generation and function are not fully understood. In vitro studies with recombinant chromatin and purified human factors demonstrate a robust SET1 complex (SET1C)-mediated H3K4 trimethylation that is dependent upon p53- and p300-mediated H3 acetylation, a corresponding SET1C-mediated enhancement of p53- and p300-dependent transcription that reflects a primary effect of SET1C through H3K4 trimethylation, and direct SET1C-p53 and SET1C-p300 interactions indicative of a targeted recruitment mechanism. Complementary cell-based assays demonstrate a DNA-damage-induced p53-SET1C interaction, a corresponding enrichment of SET1C and H3K4me3 on a p53 target gene (p21/WAF1), and a corresponding codependency of H3K4 trimethylation and transcription upon p300 and SET1C. These results establish a mechanism in which SET1C and p300 act cooperatively, through direct interactions and coupled histone modifications, to facilitate the function of p53.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Secuencia de Aminoácidos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Células HCT116 , Código de Histonas , Histonas/metabolismo , Humanos , Metilación , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Transcripción Genética
4.
Mol Cell ; 70(4): 663-678.e6, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29775581

RESUMEN

Lysine 2-hydroxyisobutyrylation (Khib) is an evolutionarily conserved and widespread histone mark like lysine acetylation (Kac). Here we report that p300 functions as a lysine 2-hyroxyisobutyryltransferase to regulate glycolysis in response to nutritional cues. We discovered that p300 differentially regulates Khib and Kac on distinct lysine sites, with only 6 of the 149 p300-targeted Khib sites overlapping with the 693 p300-targeted Kac sites. We demonstrate that diverse cellular proteins, particularly glycolytic enzymes, are targeted by p300 for Khib, but not for Kac. Specifically, deletion of p300 significantly reduces Khib levels on several p300-dependent, Khib-specific sites on key glycolytic enzymes including ENO1, decreasing their catalytic activities. Consequently, p300-deficient cells have impaired glycolysis and are hypersensitive to glucose-depletion-induced cell death. Our study reveals an p300-catalyzed, Khib-specific molecular mechanism that regulates cellular glucose metabolism and further indicate that p300 has an intrinsic ability to select short-chain acyl-CoA-dependent protein substrates.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , Glucosa/metabolismo , Glucólisis , Histonas/metabolismo , Hidroxibutiratos/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Acetilación , Proteína p300 Asociada a E1A/genética , Histonas/genética , Humanos , Lisina/genética
5.
Nature ; 574(7779): 575-580, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645732

RESUMEN

The Warburg effect, which originally described increased production of lactate in cancer, is associated with diverse cellular processes such as angiogenesis, hypoxia, polarization of macrophages and activation of T cells. This phenomenon is intimately linked to several diseases including neoplasia, sepsis and autoimmune diseases1,2. Lactate, which is converted from pyruvate in tumour cells, is widely known as an energy source and metabolic by-product. However, its non-metabolic functions in physiology and disease remain unknown. Here we show that lactate-derived lactylation of histone lysine residues serves as an epigenetic modification that directly stimulates gene transcription from chromatin. We identify 28 lactylation sites on core histones in human and mouse cells. Hypoxia and bacterial challenges induce the production of lactate by glycolysis, and this acts as a precursor that stimulates histone lactylation. Using M1 macrophages that have been exposed to bacteria as a model system, we show that histone lactylation has different temporal dynamics from acetylation. In the late phase of M1 macrophage polarization, increased histone lactylation induces homeostatic genes that are involved in wound healing, including Arg1. Collectively, our results suggest that an endogenous 'lactate clock' in bacterially challenged M1 macrophages turns on gene expression to promote homeostasis. Histone lactylation thus represents an opportunity to improve our understanding of the functions of lactate and its role in diverse pathophysiological conditions, including infection and cancer.


Asunto(s)
Epigénesis Genética , Glucólisis/genética , Histonas/química , Histonas/metabolismo , Ácido Láctico/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Homeostasis , Humanos , Hipoxia/metabolismo , Lisina/química , Lisina/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Transcripción Genética
6.
Mol Cell ; 67(2): 308-321.e6, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28732206

RESUMEN

Enhancer activation is a critical step for gene activation. Here we report an epigenetic crosstalk at enhancers between the UTX (H3K27 demethylase)-MLL4 (H3K4 methyltransferase) complex and the histone acetyltransferase p300. We demonstrate that UTX, in a demethylase activity-independent manner, facilitates conversion of inactive enhancers in embryonic stem cells to an active (H3K4me1+/H3K27ac+) state by recruiting and coupling the enzymatic functions of MLL4 and p300. Loss of UTX leads to attenuated enhancer activity, characterized by reduced levels of H3K4me1 and H3K27ac as well as impaired transcription. The UTX-MLL4 complex enhances p300-dependent H3K27 acetylation through UTX-dependent stimulation of p300 recruitment, while MLL4-mediated H3K4 monomethylation, reciprocally, requires p300 function. Importantly, MLL4-generated H3K4me1 further enhances p300-dependent transcription. This work reveals a previously unrecognized cooperativity among enhancer-associated chromatin modulators, including a unique function for UTX, in establishing an "active enhancer landscape" and defines a detailed mechanism for the joint deposition of H3K4me1 and H3K27ac.


Asunto(s)
Cromatina/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Células Madre Embrionarias/enzimología , Elementos de Facilitación Genéticos , Histona Demetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Transcripción Genética , Activación Transcripcional , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina , Proteína p300 Asociada a E1A/genética , Retroalimentación Fisiológica , Redes Reguladoras de Genes , Células HEK293 , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Masculino , Metilación , Ratones , Interferencia de ARN , Transfección
7.
Cell ; 137(3): 459-71, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19410543

RESUMEN

H2B ubiquitylation has been implicated in active transcription but is not well understood in mammalian cells. Beyond earlier identification of hBRE1 as the E3 ligase for H2B ubiquitylation in human cells, we now show (1) that hRAD6 serves as the cognate E2-conjugating enzyme; (2) that hRAD6, through direct interaction with hPAF-bound hBRE1, is recruited to transcribed genes and ubiquitylates chromatinized H2B at lysine 120; (3) that hPAF-mediated transcription is required for efficient H2B ubiquitylation as a result of hPAF-dependent recruitment of hBRE1-hRAD6 to the Pol II transcription machinery; (4) that H2B ubiquitylation per se does not affect the level of hPAF-, SII-, and p300-dependent transcription and likely functions downstream; and (5) that H2B ubiquitylation directly stimulates hSET1-dependent H3K4 di- and trimethylation. These studies establish the natural H2B ubiquitylation factors in human cells and also detail the mechanistic basis for H2B ubiquitylation and function during transcription.


Asunto(s)
Histonas/genética , Histonas/metabolismo , Activación Transcripcional , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , ADN Polimerasa II/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Proteínas Nucleares/metabolismo , Factores de Transcripción , Ubiquitinación
8.
Mol Cell ; 62(2): 181-193, 2016 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-27105114

RESUMEN

Recognition of histone covalent modifications by chromatin-binding protein modules ("readers") constitutes a major mechanism for epigenetic regulation, typified by bromodomains that bind acetyllysine. Non-acetyl histone lysine acylations (e.g., crotonylation, butyrylation, propionylation) have been recently identified, but readers that prefer these acylations have not been characterized. Here we report that the AF9 YEATS domain displays selectively higher binding affinity for crotonyllysine over acetyllysine. Structural studies revealed an extended aromatic sandwiching cage with crotonyl specificity arising from π-aromatic and hydrophobic interactions between crotonyl and aromatic rings. These features are conserved among the YEATS, but not the bromodomains. Using a cell-based model, we showed that AF9 co-localizes with crotonylated histone H3 and positively regulates gene expression in a YEATS domain-dependent manner. Our studies define the evolutionarily conserved YEATS domain as a family of crotonyllysine readers and specifically demonstrate that the YEATS domain of AF9 directly links histone crotonylation to active transcription.


Asunto(s)
Crotonatos/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Transcripción Genética , Activación Transcripcional , Acetilación , Animales , Sitios de Unión , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Células HEK293 , Histonas/química , Histonas/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lisina , Ratones , Modelos Moleculares , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Dominios Proteicos , Células RAW 264.7 , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción , Transfección
9.
Mol Cell ; 62(2): 169-180, 2016 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-27105113

RESUMEN

Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features.


Asunto(s)
Butiratos/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Espermatocitos/metabolismo , Acetilación , Animales , Sitios de Unión , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Estudio de Asociación del Genoma Completo , Histonas/química , Histonas/genética , Lisina , Masculino , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Transcripción Genética , Activación Transcripcional
10.
Mol Cell ; 62(2): 194-206, 2016 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-27105115

RESUMEN

Here we report the identification and verification of a ß-hydroxybutyrate-derived protein modification, lysine ß-hydroxybutyrylation (Kbhb), as a new type of histone mark. Histone Kbhb marks are dramatically induced in response to elevated ß-hydroxybutyrate levels in cultured cells and in livers from mice subjected to prolonged fasting or streptozotocin-induced diabetic ketoacidosis. In total, we identified 44 histone Kbhb sites, a figure comparable to the known number of histone acetylation sites. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbhb is a mark enriched in active gene promoters and that the increased H3K9bhb levels that occur during starvation are associated with genes upregulated in starvation-responsive metabolic pathways. Histone ß-hydroxybutyrylation thus represents a new epigenetic regulatory mark that couples metabolism to gene expression, offering a new avenue to study chromatin regulation and diverse functions of ß-hydroxybutyrate in the context of important human pathophysiological states, including diabetes, epilepsy, and neoplasia.


Asunto(s)
Cetoacidosis Diabética/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica , Histonas/metabolismo , Hidroxibutiratos/metabolismo , Hígado/metabolismo , Procesamiento Proteico-Postraduccional , Inanición/metabolismo , Animales , Sitios de Unión , Ensamble y Desensamble de Cromatina , Cetoacidosis Diabética/inducido químicamente , Cetoacidosis Diabética/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Células HEK293 , Histonas/genética , Humanos , Lisina , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Inanición/genética , Estreptozocina
11.
Mol Cell ; 58(2): 203-15, 2015 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-25818647

RESUMEN

Acetylation of histones at DNA regulatory elements plays a critical role in transcriptional activation. Histones are also modified by other acyl moieties, including crotonyl, yet the mechanisms that govern acetylation versus crotonylation and the functional consequences of this "choice" remain unclear. We show that the coactivator p300 has both crotonyltransferase and acetyltransferase activities, and that p300-catalyzed histone crotonylation directly stimulates transcription to a greater degree than histone acetylation. Levels of histone crotonylation are regulated by the cellular concentration of crotonyl-CoA, which can be altered through genetic and environmental perturbations. In a cell-based model of transcriptional activation, increasing or decreasing the cellular concentration of crotonyl-CoA leads to enhanced or diminished gene expression, respectively, which correlates with the levels of histone crotonylation flanking the regulatory elements of activated genes. Our findings support a general principle wherein differential histone acylation (i.e., acetylation versus crotonylation) couples cellular metabolism to the regulation of gene expression.


Asunto(s)
Acilcoenzima A/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Histonas/metabolismo , Macrófagos/inmunología , ARN Mensajero/metabolismo , Activación Transcripcional , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetilación , Acilcoenzima A/genética , Línea Celular , Sistema Libre de Células , Proteína p300 Asociada a E1A/genética , Células HEK293 , Células HeLa , Humanos , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Datos de Secuencia Molecular
12.
Genes Dev ; 29(20): 2123-39, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26494788

RESUMEN

RUNX1-RUNX1T1 (formerly AML1-ETO), a transcription factor generated by the t(8;21) translocation in acute myeloid leukemia (AML), dictates a leukemic program by increasing self-renewal and inhibiting differentiation. Here we demonstrate that the histone demethylase JMJD1C functions as a coactivator for RUNX1-RUNX1T1 and is required for its transcriptional program. JMJD1C is directly recruited by RUNX1-RUNX1T1 to its target genes and regulates their expression by maintaining low H3K9 dimethyl (H3K9me2) levels. Analyses in JMJD1C knockout mice also establish a JMJD1C requirement for RUNX1-RUNX1T1's ability to increase proliferation. We also show a critical role for JMJD1C in the survival of multiple human AML cell lines, suggesting that it is required for leukemic programs in different AML cell types through its association with key transcription factors.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia Mieloide Aguda/fisiopatología , Oxidorreductasas N-Desmetilantes/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Leucemia Mieloide Aguda/genética , Ratones Noqueados , Oxidorreductasas N-Desmetilantes/genética , Transporte de Proteínas/genética
15.
EMBO J ; 34(23): 2885-902, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26330467

RESUMEN

The Mediator complex orchestrates multiple transcription factors with the Pol II apparatus for precise transcriptional control. However, its interplay with the surrounding chromatin remains poorly understood. Here, we analyze differential histone modifications between WT and MED23(-/-) (KO) cells and identify H2B mono-ubiquitination at lysine 120 (H2Bub) as a MED23-dependent histone modification. Using tandem affinity purification and mass spectrometry, we find that MED23 associates with the RNF20/40 complex, the enzyme for H2Bub, and show that this association is critical for the recruitment of RNF20/40 to chromatin. In a cell-free system, Mediator directly and substantially increases H2Bub on recombinant chromatin through its cooperation with RNF20/40 and the PAF complex. Integrative genome-wide analyses show that MED23 depletion specifically reduces H2Bub on a subset of MED23-controlled genes. Importantly, MED23-coupled H2Bub levels are oppositely regulated during myogenesis and lung carcinogenesis. In sum, these results establish a mechanistic link between the Mediator complex and a critical chromatin modification in coordinating transcription with cell growth and differentiation.


Asunto(s)
Histonas/metabolismo , Complejo Mediador/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Complejo Mediador/genética , Ratones , Modelos Biológicos , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Ubiquitinación/genética , Ubiquitinación/fisiología
16.
Nature ; 500(7460): 93-7, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23812588

RESUMEN

Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1-ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1-ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that 'read' the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1-ETO resides in and functions through a stable AML1-ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1-ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2-N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1-ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1-ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.


Asunto(s)
Transformación Celular Neoplásica , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Complejos Multiproteicos/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , División Celular , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/química , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Proteínas de Fusión Oncogénica/química , Mutación Puntual , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteína 1 Compañera de Translocación de RUNX1
17.
Proc Natl Acad Sci U S A ; 112(33): 10365-70, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240340

RESUMEN

Ubiquitylation of histone H2B at lysine 120 (H2B-Ub) plays a critical role in transcriptional elongation, chromatin conformation, as well as the regulation of specific histone H3 methylations. Herein, we report a strategy for the site-specific chemical attachment of ubiquitin to preassembled nucleosomes. This allowed expedited structure-activity studies into how H2B-Ub regulates H3K79 methylation by the methyltransferase human Dot1. Through an alanine scan of the ubiquitin surface, we identified a functional hotspot on ubiquitin that is required for the stimulation of human Dot1 in vitro. Importantly, this result was validated in chromatin from isolated nuclei by using a synthetic biology strategy that allowed selective incorporation of the hotspot-deficient ubiquitin mutant into H2B. The ubiquitin hotspot additionally impacted the regulation of ySet1-mediated H3K4 methylation but was not required for H2B-Ub-induced impairment of chromatin fiber compaction. These data demonstrate the utility of applying chemical ligation technologies to preassembled chromatin and delineate the multifunctionality of ubiquitin as a histone posttranslational modification.


Asunto(s)
Cromatina/química , Histonas/química , Metiltransferasas/química , Ubiquitina/química , Secuencia de Aminoácidos , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina , Humanos , Lisina/química , Metilación , Mutación , Nucleosomas/química , Unión Proteica , Ingeniería de Proteínas/métodos , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Programas Informáticos , Relación Estructura-Actividad , Propiedades de Superficie , Ubiquitinación
18.
PLoS Genet ; 9(6): e1003524, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23754954

RESUMEN

The interplay between polycomb and trithorax complexes has been implicated in embryonic stem cell (ESC) self-renewal and differentiation. It has been shown recently that WRD5 and Dpy-30, specific components of the SET1/MLL protein complexes, play important roles during ESC self-renewal and differentiation of neural lineages. However, not much is known about how and where specific trithorax complexes are targeted to genes involved in self-renewal or lineage-specification. Here, we report that the recruitment of the hSET1A histone H3K4 methyltransferase (HMT) complex by transcription factor USF1 is required for mesoderm specification and lineage differentiation. In undifferentiated ESCs, USF1 maintains hematopoietic stem/progenitor cell (HS/PC) associated bivalent chromatin domains and differentiation potential. Furthermore, USF1 directed recruitment of the hSET1A complex to the HoxB4 promoter governs the transcriptional activation of HoxB4 gene and regulates the formation of early hematopoietic cell populations. Disruption of USF or hSET1A function by overexpression of a dominant-negative AUSF1 mutant or by RNA-interference-mediated knockdown, respectively, led to reduced expression of mesoderm markers and inhibition of lineage differentiation. We show that USF1 and hSET1A together regulate H3K4me3 modifications and transcription preinitiation complex assembly at the hematopoietic-associated HoxB4 gene during differentiation. Finally, ectopic expression of USF1 in ESCs promotes mesoderm differentiation and enforces the endothelial-to-hematopoietic transition by inducing hematopoietic-associated transcription factors, HoxB4 and TAL1. Taken together, our findings reveal that the guided-recruitment of the hSET1A histone methyltransferase complex and its H3K4 methyltransferase activity by transcription regulator USF1 safeguards hematopoietic transcription programs and enhances mesoderm/hematopoietic differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/genética , Factores Estimuladores hacia 5'/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Células K562 , Mesodermo/citología , Mesodermo/metabolismo , Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/metabolismo , Activación Transcripcional , Factores Estimuladores hacia 5'/metabolismo
19.
Nat Commun ; 15(1): 2879, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570506

RESUMEN

Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.


Asunto(s)
Linfoma de Células B Grandes Difuso , Animales , Ratones , Linfocitos B/metabolismo , Cromatina/genética , Cromatina/metabolismo , Centro Germinal/metabolismo , Linfoma de Células B Grandes Difuso/genética , Mutación , Microambiente Tumoral/genética
20.
Cancer Lett ; 575: 216404, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37739210

RESUMEN

Elevated expression and genetic aberration of IRTKS, also named as BAIAP2L1, have been observed in many tumors, especially in tumor progression. however, the molecular and cellular mechanisms involved in the IRTKS-enhanced tumor progression are obscure. Here we show that higher IRTKS level specifically increases histone H3 lysine 9 trimethylation (H3K9me3) by promoting accumulation of the histone methyltransferase SETDB1. Furthermore, we reveal that IRTKS recruits the deubiquitinase OTUD4 to remove Lys48-linked polyubiquitination at K182/K1050 sites of SETDB1, thus blocking SETDB1 degradation via the ubiquitin-proteasome pathway. Interestingly, the enhanced IRTKS-OTUD4-SETDB1-H3K9me3 axis leads to a general decrease in chromatin accessibility, which inhibits transcription of CDH1 encoding E-cadherin, a key molecule essential for maintaining epithelial cell phenotype, and therefore results in epithelial-mesenchymal transition (EMT) and malignant cell metastasis. Clinically, the elevated IRTKS levels in tumor specimens correlate with SETDB1 levels, but negatively associate with survival time. Our data reveal a novel mechanism for the IRTKS-enhanced tumor progression, where IRTKS cooperates with OTUD4 to enhance SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. This study also provides a potential approach to reduce the activity and stability of the known therapeutic target SETDB1 possibly through regulating IRTKS or deubiquitinase OTUD4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA