Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Opt Express ; 32(2): 1231-1245, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297679

RESUMEN

Comprehensive optical imaging of the intensity, phase, and birefringent information of the biological sample is important because important physical or pathological changes always accompany the changes in multiple optical parameters. Current studies lack such a metric that can present the comprehensive optical property of the sample in one figure. In this paper, a polarization state synthesis tomography (PoST) method, which is based on the principle of polarization state coherent synthesis and demodulation, is proposed to achieve full-field tomographic imaging of the comprehensive information (i.e., intensity, phase, and birefringence) of the biological sample. In this method, the synthesis of the polarization state is achieved by the time-domain full-field low coherence interferometer, where the polarization states of the sample beam and the reference beam are set to be orthogonal for the synthesis of the polarization state. The synthesis of the polarization state enables two functions of the PoST system: (1) Depth information of the sample can be encoded by the synthesized polarization state because only when the optical path length difference between the two arms is within the coherence length, a new polarization state can be synthesized; (2) Since the scattering coefficient, refractive index and the birefringent property of the sample can modulate the intensity and phase of the sample beam, the synthesized polarization state is sensitive to all these three parameters and can provide the comprehensive optical information of the sample. In this work, the depth-resolved ability and the comprehensive optical imaging metric have been demonstrated by the standard samples and the onion cells, demonstrating the potential application value of this method for further investigation of the important physical or pathological process of the biological tissues.

2.
Opt Lett ; 48(7): 1878-1881, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37221789

RESUMEN

To achieve non-invasive and high effective resolution microvascular imaging in vivo, photothermal modulation speckle optical coherence tomography (PMS-OCT) imaging technology is proposed in this Letter to enhance the speckle signal of the bloodstream for improving the imaging contrast and image quality in the deeper depth of Fourier domain optical coherence tomography (FD-OCT). The results of simulation experiments proved that this photothermal effect could disturb and enhance the speckle signals, because the photothermal effect could modulate the sample volume to expand and change the refractive index of tissues, leading to the change in the phase of interference light. Therefore, the speckle signal of the bloodstream will also change. With this technology we obtain a clear cerebral vascular nondestructive image of a chicken embryo at a certain imaging depth. This technology expands the application fields of optical coherence tomography (OCT) especially in more complex biological structures and tissues, such as the brain, and provides a new way, to the best of our knowledge, for the application of OCT in brain science.


Asunto(s)
Encéfalo , Tomografía de Coherencia Óptica , Embrión de Pollo , Animales , Pollos , Simulación por Computador , Embrión de Mamíferos
3.
Opt Lett ; 48(18): 4757-4760, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37707895

RESUMEN

To achieve accurate selection and synchronous imaging of blood vessels and lymph, a speckle spectrum contrast method (SSC) based on spectral-domain optical coherence tomography (SD-OCT) is proposed in this Letter. In this method, the time-lapse optical coherence tomography (OCT) intensity signal is transformed to the Fourier frequency domain. By analyzing the frequency spectrum of the time-lapse OCT intensity signal, a parameter called SSC signal, which represents the ratio of different intervals of the high frequency to the low frequency, is utilized to extract and contrast different types of the vessels in the biological tissues. In the SSC spectrum, the SSC signals of the static tissue, lymphatic vessels, and vascular vessels can be separated in three different frequency intervals, enabling differentiation and synchronous imaging of the lymphatic-vascular vessels. A mouse ear was used to demonstrate the feasibility and efficiency of this method. By using the SSC signal as the imaging parameter, the lymphatic and blood vessels of the mouse ear are differentiated and visualized simultaneously. This study shows the feasibility of the three-dimensional (3D) synchronous angio-lymphography based on the SSC method, which provides a tool to improve the understanding for disease research and treatment.


Asunto(s)
Linfografía , Tomografía de Coherencia Óptica , Animales , Ratones
4.
Nano Lett ; 22(12): 4661-4668, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35640103

RESUMEN

Confined nanospaces provide a new platform to promote catalytic reactions. However, the mechanism of catalytic enhancement in the nanospace still requires insightful exploration due to the lack of direct visualization. Here, we report operando investigations on the etching and growth of graphene in a two-dimensional (2D) confined space between graphene and a Cu substrate. We observed that the graphene layer between the Cu and top graphene layer was surprisingly very active in etching (more than 10 times faster than the etching of the top graphene layer). More strikingly, at a relatively low temperature (∼530 °C), the etched carbon radicals dissociated from the bottom layer, in turn feeding the growth of the top graphene layer with a very high efficiency. Our findings reveal the in situ dynamics of the anomalous confined catalytic processes in 2D confined spaces and thus pave the way for the design of high-efficiency catalysts.

5.
Small ; 18(34): e2202522, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896869

RESUMEN

Regulating the catalytic pathways of single-atom sites in single atom catalysts (SACs) is an exciting debate at the moment, which has redirected the research towards understanding and modifying the single-atom catalytic sites through various strategies including altering the coordination environment of single atom for desirable outcomes as well as increasing their number. One useful aspect concerning the tunability of the catalytic pathways of SACs, which has been overlooked, is the oxidation state dynamics of the single atoms. In this study, iron single-atoms (FeSA) with variable oxidation states, dependent on the precursors, are harnessed inside a nitrogen-rich functionalized carbon quantum dots (CQDs) matrix via a facile one-step and low-temperature synthesis process. Dynamic electronic properties are imparted to the FeSAs by the simpler carbon dots matrix of CQDs in order to achieve the desired catalytic pathways of reactive oxygen species (ROS) generation in different environments, which are explored experimentally and theoretically for an in-depth understanding of the redox chemistry that drives the alternative catalytic pathways in FeSA@CQDs. These alternative and oxidation state-dependent catalytic pathways are employed for specific as well as cascade-like activities simulating natural enzymes as well as biomarkers for the detection of cancerous cells.


Asunto(s)
Carbono , Puntos Cuánticos , Carbono/química , Catálisis , Nitrógeno/química , Oxidación-Reducción , Puntos Cuánticos/química
6.
Opt Lett ; 46(22): 5635-5638, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780424

RESUMEN

To realize multimodal hemodynamic imaging, pulse photothermal optical coherence tomography (P-PTOCT) is proposed in this Letter to solve the separation problem of photothermal phase and Doppler phase, which is difficult to solve in traditional PTOCT. This technique can obtain blood flow distribution, light absorption distribution, and concentration images simultaneously. Based on the difference between pulse photothermal phase and Doppler phase, we propose an even number differential demodulation algorithm that can separate the photothermal phase and Doppler phase from the same scanning data set. The separated photothermal phase can characterize the trend of drug concentration, which provides the possibility for quantitative measurement of plasma concentration. The combination of photothermal phase and Doppler phase is helpful for potential clinical research on hemodynamics of cerebral ischemia and provides a technical reference for the rapid acquisition of perfusion volume and plasma concentration at one time.

7.
Appl Opt ; 60(27): 8472-8479, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34612948

RESUMEN

Due to the sensitivity of wave plates to the angle of incidence (AOI) of light, the accuracy of a dual rotating retarder Mueller matrix polarimeter is also influenced by the AOI. Unlike other conventional systematic errors, the phase retardance error of wave plates caused by AOI is a periodic perturbation rather than a constant. We propose a new method to eliminate the influence of AOI based on a numerical calibration method. To verify the reliability of the proposed calibration method, we measured various types of samples in a transmission Mueller matrix measuring system, such as air, dichroic samples, and birefringent samples, with different AOI conditions. It is demonstrated that the new calibration method can effectively eliminate the influence of AOI. After calibration, the maximum measurement error can be reduced to less than 0.02.

8.
Appl Opt ; 60(17): 5081-5086, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34143073

RESUMEN

A new, to the best of our knowledge, method for Stokes vector imaging is proposed to achieve imaging and dynamic monitoring of a non-labeled cytomembrane. In this work, a polarization state vector is described by a Stokes vector and expressed in chrominance space. A physical quantity called polarization chromaticity value (PCV) corresponding to a Stokes vector is used as the imaging parameter to perform Stokes vector imaging. By using the PCV imaging technique, the Stokes vector can be expressed in three-dimensional real space rather than in a Poincare sphere. Furthermore, a four-way Stokes parameter confocal microscopy system is designed to measure four Stokes parameters simultaneously and obtain micro-imaging. Label-free living onion cell membranes and their plasmolysis process are selected as the representative micro-anisotropy experimental analysis. It is proved that PCV imaging can perform visualization of cytomembranes, and further, microscopic orientation is demonstrated. The prospect of universal measurement of anisotropy details for analysis and diagnosis is provided.


Asunto(s)
Estructuras de la Membrana Celular/fisiología , Microscopía Confocal/métodos , Microscopía de Polarización/métodos , Cebollas/citología , Imagen Óptica/métodos , Células Vegetales/fisiología , Anisotropía , Interpretación de Imagen Asistida por Computador
9.
Opt Lett ; 44(15): 3757-3760, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368961

RESUMEN

An integrated dual-channel sensing method utilizing polarized dissimilation is investigated with an appropriately designed plasmonic metasurface. By assembling two different kinds of nano-gold antennas to constitute a periodic array, the phase of diffraction fields contains both spin-dependent geometric phase and resonance-dependent dynamic phase components. Accurate control over the superposition of orthogonal spin components utilizing strong photonic spin-orbit interaction of metasurface leads to dissimilar response of different diffraction orders. The simulation shows that the linear polarization of ±1 diffraction orders rotate in the reverse direction (±19°) with the refractive index variation (1.3-1.5). The sensing method exhibits an extremely high signal-to-noise ratio and stability.

10.
Int J Hyperthermia ; 34(6): 756-763, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28826269

RESUMEN

BACKGROUND: Temperature increase in tumour tissue during photothermal therapy (PTT) is a significant factor in determining the outcomes of the treatment. Therefore, controlling and optimising temperature distribution in target tissue is crucial for PTT. In this study, we developed a unique ex vivo device to study the temperature distribution during PTT to be used as a guide for the desired photothermal effects for cancer treatment. METHODS: Bovine liver tissue buried inside agarose gel served as a phantom tumour surrounded by normal tissue. A thermostatic incubator was used to simulate tissue environment in live animals. The temperature distributions were measured by thermocouples with needle probes at different locations inside the target tissue, during laser irradiation using an 805-nm laser. RESULTS: The results obtained using the ex vivo device were verified by comparing the tissue temperature directly measured in animal tumours irradiated under the same conditions. With this model, the spatial distribution of temperature in target tissue can be monitored in real time. A two-dimensional temperature distribution in target tissue allows us to establish the correlations among laser parameters, temperature distribution and tumour size. In addition, the optimal temperature range for tumour destruction and immunological stimulation was determined using metastatic rat mammary tumour model. CONCLUSION: The device and method developed in this study can provide guidance for choosing the appropriate treatment parameters for optimal photothermal effects, particularly when combined with immunotherapy, for cancer treatment.


Asunto(s)
Tumor de Células de Leydig/radioterapia , Fototerapia/métodos , Animales , Humanos , Tumor de Células de Leydig/patología , Ratas , Temperatura
11.
Opt Lett ; 42(23): 4974-4977, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216159

RESUMEN

We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.


Asunto(s)
Relación Señal-Ruido , Temperatura , Tomografía de Coherencia Óptica/métodos , Animales , Capilares/diagnóstico por imagen , Oído/irrigación sanguínea , Imagenología Tridimensional , Ratones
12.
Nat Commun ; 15(1): 4130, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755189

RESUMEN

Compared to transition metal dichalcogenide (TMD) monolayers, rhombohedral-stacked (R-stacked) TMD bilayers exhibit remarkable electrical performance, enhanced nonlinear optical response, giant piezo-photovoltaic effect and intrinsic interfacial ferroelectricity. However, from a thermodynamics perspective, the formation energies of R-stacked and hexagonal-stacked (H-stacked) TMD bilayers are nearly identical, leading to mixed stacking of both H- and R-stacked bilayers in epitaxial films. Here, we report the remote epitaxy of centimetre-scale single-crystal R-stacked WS2 bilayer films on sapphire substrates. The bilayer growth is realized by a high flux feeding of the tungsten source at high temperature on substrates. The R-stacked configuration is achieved by the symmetry breaking in a-plane sapphire, where the influence of atomic steps passes through the lower TMD layer and controls the R-stacking of the upper layer. The as-grown R-stacked bilayers show up-to-30-fold enhancements in carrier mobility (34 cm2V-1s-1), nearly doubled circular helicity (61%) and interfacial ferroelectricity, in contrast to monolayer films. Our work reveals a growth mechanism to obtain stacking-controlled bilayer TMD single crystals, and promotes large-scale applications of R-stacked TMD.

13.
Opt Lett ; 38(9): 1503-5, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23632532

RESUMEN

Photoacoustic microscopy (PAM), whose image quality largely depends on the optical absorption of samples, provides endogenous information for structural and functional imaging. However, PAM technology in general can not provide edge enhancement imaging for absorbing objects. Therefore, PAM and differential microscopy are integrated for the first time in a single technique to obtain an edge enhancement image. The resolution test target RTA-07 and red blood cells are used as samples to achieve the desired spatial differential photoacoustic imaging. The feasible biomedical application of edge enhancement from the improved differential PAM was demonstrated.

14.
Nat Commun ; 14(1): 592, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737606

RESUMEN

The great challenge for the growth of non-centrosymmetric 2D single crystals is to break the equivalence of antiparallel grains. Even though this pursuit has been partially achieved in boron nitride and transition metal dichalcogenides (TMDs) growth, the key factors that determine the epitaxy of non-centrosymmetric 2D single crystals are still unclear. Here we report a universal methodology for the epitaxy of non-centrosymmetric 2D metal dichalcogenides enabled by accurate time sequence control of the simultaneous formation of grain nuclei and substrate steps. With this methodology, we have demonstrated the epitaxy of unidirectionally aligned MoS2 grains on a, c, m, n, r and v plane Al2O3 as well as MgO and TiO2 substrates. This approach is also applicable to many TMDs, such as WS2, NbS2, MoSe2, WSe2 and NbSe2. This study reveals a robust mechanism for the growth of various 2D single crystals and thus paves the way for their potential applications.

15.
Nat Commun ; 14(1): 6421, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828069

RESUMEN

Controllable growth of two-dimensional (2D) single crystals on insulating substrates is the ultimate pursuit for realizing high-end applications in electronics and optoelectronics. However, for the most typical 2D insulator, hexagonal boron nitride (hBN), the production of a single-crystal monolayer on insulating substrates remains challenging. Here, we propose a methodology to realize the facile production of inch-sized single-crystal hBN monolayers on various insulating substrates by an atomic-scale stamp-like technique. The single-crystal Cu foils grown with hBN films can stick tightly (within 0.35 nm) to the insulating substrate at sub-melting temperature of Cu and extrude the hBN grown on the metallic surface onto the insulating substrate. Single-crystal hBN films can then be obtained by removing the Cu foil similar to the stamp process, regardless of the type or crystallinity of the insulating substrates. Our work will likely promote the manufacturing process of fully single-crystal 2D material-based devices and their applications.

16.
Opt Express ; 20(5): 5802-8, 2012 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-22418386

RESUMEN

We report on a sub-cellular resolution photoacoustic microscopy (PAM) system that employs microcavity synchronous parallel acquisition technique for detecting the weak photoacoustic (PA) signal excited by a modulated continuous wave (CW) laser source. The gas microcavity transducer is developed based on the fact that the bulk modulus of the gas is far less than the solid and the change of the air-gas pressure is inversely proportional to the gas volume, making it extremely sensitive to the tiny PA pressure wave. Besides, considering PA wave expends in various directions, detecting PA signals from different position and adding them together can increase the detecting sensitivity and the signal to noise ratio(SNR), then we employs two microphone to acquire PA wave synchronously and parallelly. We show that the developed PAM system is capable of label-free imaging and differentiating of the hemoglobin distribution within single red blood cells under normal and anemia conditions.


Asunto(s)
Aumento de la Imagen/instrumentación , Lentes , Microscopía Acústica/instrumentación , Técnicas Fotoacústicas/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
17.
Biomed Opt Express ; 13(10): 5390-5399, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36425642

RESUMEN

Lymphatic vessels are structurally similar to blood vessels, and the lymphatic fluid flowing within the lymphatic vessels is distributed throughout the body and plays a vital role in the human immune system. Visualization of the lymphatic vessels is clinically important in the diagnosis of tumor cell metastasis and related immune system diseases, but lymph is difficult to image due to its near-transparent nature and low flow rate. In this paper, we present a lymphography method based on time-autocorrelated optical coherence tomography. By using the minimum value difference of the autocorrelation function of the time-varying interference intensity between the lymph and the surrounding tissues, the non-invasive and high-sensitivity imaging of lymph vessels can be achieved. The method proposed in this paper has potential significance for the research and treatment of immune system diseases.

18.
Adv Healthc Mater ; 11(6): e2101448, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34937144

RESUMEN

Carbon dots (CDs) are considered as promising candidates with superior biocompatibilities for multimodel cancer theranostics. However, incorporation of exogenous components, such as targeting molecules and chemo/photo therapeutic drugs, is often required to improve the therapeutic efficacy. Herein, an "all-in-one" CDs that exhibit intrinsic bioactivities for bioimaging, potent tumor therapy, and postoperative management is proposed. The multifunctional CDs derived from gallic acid and tyrosine (GT-CDs) consist of a graphitized carbon core and N, O-rich functional groups, which endow them with a high near-infrared (NIR) photothermal conversion efficiency of 33.9% and tumor-specific cytotoxicity, respectively. A new imaging modality, photothermal optical coherence tomography, is introduced using GT-CDs as the contrast agent, offering the micrometer-scale resolution 3D tissue morphology of tumor. For cancer therapy, GT-CDs initiate the intracellular generation of reactive oxygen species in tumor cells but not normal cells, further induce the mitochondrial collapse and subsequent tumor cellular apoptosis. Combined with NIR photothermal treatment, synergistic antitumor therapy is achieved in vitro and in vivo. GT-CDs also promote the healing process of bacteria-contaminated skin wound, demonstrating their potential to prevent postoperative infection. The integrated theranostic strategy based on versatile GT-CDs supplies an alternative easy-to-handle pattern for disease management.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapéutico , Carbono/farmacología , Línea Celular Tumoral , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Fototerapia/métodos , Nanomedicina Teranóstica , Tomografía de Coherencia Óptica
19.
Adv Sci (Weinh) ; 9(20): e2201046, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35557501

RESUMEN

The low-energy layer edge states (LESs) from quasi 2D hybrid perovskite single crystals have shown great potential because of their nontrivial photoelectrical properties. However, the underlying formation mechanism of the LESs still remains controversial. Also, the presence or creation of the LESs is of high randomness due to the lack of proper techniques to manually generate these LESs. Herein, using a single crystals platform of quasi-2D (BA)2 (MA)n-1 Pbn I3n+1 (n > 1) perovskites, the femtosecond laser ablation approach to design and write the LESs with a high spatial resolution is reported. Fundamentally, these LESs are of smaller bandgap 3D MAPbI3 nanocrystals which are formed by the laser-induced BA escaping from the lattice and thus the lattice shrinkage from quasi-2D to 3D structures. Furthermore, by covering the crystal with tape, an additional high-energy emission state corresponding to the reformation of (BA)2 PbI4 (n = 1) within the irradiation region is generated. This work presents a simple and efficient protocol to manually write LESs on single crystals and thus lays the foundation for utilizing these LESs to further enhance the performance of future photoelectronic devices.

20.
Nat Nanotechnol ; 17(1): 33-38, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34782776

RESUMEN

The growth of wafer-scale single-crystal two-dimensional transition metal dichalcogenides (TMDs) on insulating substrates is critically important for a variety of high-end applications1-4. Although the epitaxial growth of wafer-scale graphene and hexagonal boron nitride on metal surfaces has been reported5-8, these techniques are not applicable for growing TMDs on insulating substrates because of substantial differences in growth kinetics. Thus, despite great efforts9-20, the direct growth of wafer-scale single-crystal TMDs on insulating substrates is yet to be realized. Here we report the successful epitaxial growth of two-inch single-crystal WS2 monolayer films on vicinal a-plane sapphire surfaces. In-depth characterizations and theoretical calculations reveal that the epitaxy is driven by a dual-coupling-guided mechanism, where the sapphire plane-WS2 interaction leads to two preferred antiparallel orientations of the WS2 crystal, and sapphire step edge-WS2 interaction breaks the symmetry of the antiparallel orientations. These two interactions result in the unidirectional alignment of nearly all the WS2 islands. The unidirectional alignment and seamless stitching of WS2 islands are illustrated via multiscale characterization techniques; the high quality of WS2 monolayers is further evidenced by a photoluminescent circular helicity of ~55%, comparable to that of exfoliated WS2 flakes. Our findings offer the opportunity to boost the production of wafer-scale single crystals of a broad range of two-dimensional materials on insulators, paving the way to applications in integrated devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA