Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Dev Growth Differ ; 65(1): 23-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36397722

RESUMEN

Thyroid hormone (T3) is essential for normal development and metabolism, especially during postembryonic development, a period around birth in mammals when plasma T3 levels reach their peak. T3 functions through two T3 receptors, TRα and TRß. However, little is known about the tissue-specific functions of TRs during postembryonic development because of maternal influence and difficulty in manipulation of mammalian models. We have studied Xenopus tropicalis metamorphosis as a model for human postembryonic development. By using TRα knockout (Xtr·thratmshi ) tadpoles, we have previously shown that TRα is important for T3-dependent intestinal remodeling and hindlimb development but not tail resorption during metamorphosis. Here, we have identified genes bound by TR in premetamorphic wild-type and Xtr·thratmshi tails with or without T3 treatment by using chromatin immunoprecipitation-sequencing and compared them with those in the intestine and hindlimb. Compared to other organs, the tail has much fewer genes bound by TR or affected by TRα knockout. Bioinformatic analyses revealed that among the genes bound by TR in wild-type but not Xtr·thratmshi organs, fewer gene ontology (GO) terms or biological pathways related to metamorphosis were enriched in the tail compared to those in the intestine and hindlimb. This difference likely underlies the drastic effects of TRα knockout on the metamorphosis of the intestine and hindlimb but not the tail. Thus, TRα has tissue-specific roles in regulating T3-dependent anuran metamorphosis by directly targeting the pathways and GO terms important for metamorphosis.


Asunto(s)
Receptores alfa de Hormona Tiroidea , Proteínas de Xenopus , Xenopus , Animales , Humanos , Regulación del Desarrollo de la Expresión Génica/genética , Mamíferos/metabolismo , Metamorfosis Biológica/genética , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Triyodotironina/genética , Triyodotironina/metabolismo , Triyodotironina/farmacología , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
2.
Dev Growth Differ ; 64(1): 48-58, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34862790

RESUMEN

Thyroid hormone (T3) affects many diverse physiological processes such as metabolism, organogenesis, and growth. The two highly related frog species, diploid Xenopus tropicalis and pseudo tetraploid Xenopus laevis, have been used as models for analyzing the effects of T3 during vertebrate development. T3 regulates T3-inducible gene transcription through T3 receptor (TR)-binding to T3-response elements (TREs). We have previously identified sperm associated antigen 7 (spag7) as a candidate T3 target gene that is potentially involved in adult stem cell development and/or proliferation during intestinal metamorphosis. To investigate whether T3 regulates spag7 directly at the transcriptional level via TR, we first conducted qRT-PCR to analyze its expression during natural and T3-induced metamorphosis and found that spag7 was up-regulated during natural metamorphosis in the intestine, tail, brain and hindlimb, peaking at the climax of metamorphosis in all those organs, and upon T3 treatment of premetamorphic tadpoles. Next, we demonstrated that an intronic TRE in spag7, first identified through bioinformatic analysis, could bind to TR in vitro and in vivo during metamorphosis. A dual luciferase assay utilizing a reconstituted frog oocyte transcription system showed that the TRE could mediate promoter activation by liganded TR. These results indicate that spag7 expression is directly regulated by T3 through the TRE in the first intron during metamorphosis, implicating a role for spag7 early during T3-regulated tissue remodeling and resorption.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Metamorfosis Biológica , Animales , Intrones , Metamorfosis Biológica/genética , Elementos de Respuesta , Hormonas Tiroideas , Triyodotironina/metabolismo , Triyodotironina/farmacología , Xenopus/genética , Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35163147

RESUMEN

Thyroid hormone (T3) receptors (TRs) mediate T3 effects on vertebrate development. We have studied Xenopus tropicalis metamorphosis as a model for postembryonic human development and demonstrated that TRα knockout induces precocious hind limb development. To reveal the molecular pathways regulated by TRα during limb development, we performed chromatin immunoprecipitation- and RNA-sequencing on the hind limb of premetamorphic wild type and TRα knockout tadpoles, and identified over 700 TR-bound genes upregulated by T3 treatment in wild type but not TRα knockout tadpoles. Interestingly, most of these genes were expressed at higher levels in the hind limb of premetamorphic TRα knockout tadpoles than stage-matched wild-type tadpoles, suggesting their derepression upon TRα knockout. Bioinformatic analyses revealed that these genes were highly enriched with cell cycle and Wingless/Integrated (Wnt) signaling-related genes. Furthermore, cell cycle and Wnt signaling pathways were also highly enriched among genes bound by TR in wild type but not TRα knockout hind limb. These findings suggest that direct binding of TRα to target genes related to cell cycle and Wnt pathways is important for limb development: first preventing precocious hind limb formation by repressing these pathways as unliganded TR before metamorphosis and later promoting hind limb development during metamorphosis by mediating T3 activation of these pathways.


Asunto(s)
Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/embriología , Metamorfosis Biológica , Organogénesis , Receptores alfa de Hormona Tiroidea/metabolismo , Vía de Señalización Wnt , Animales , Femenino , Masculino , Receptores alfa de Hormona Tiroidea/genética , Xenopus laevis
4.
Gen Comp Endocrinol ; 287: 113349, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794731

RESUMEN

Anuran metamorphosis is perhaps the most dramatic developmental process regulated by thyroid hormone (TH). One of the unique processes that occur during metamorphosis is the complete resorption of the tail, including the notochord. Interestingly, recent gene knockout studies have shown that of the two known vertebrate TH receptors, TRα and TRß, TRß appears to be critical for notochord regression during tail resorption in Xenopus tropicalis. To determine the mechanisms underlying notochord regression, we carried out a comprehensive gene expression analysis in the notochord during metamorphosis by using RNA-Seq analyses of whole tail at stage 60 before any noticeable tail length reduction, whole tail at stage 63 when the tail length is reduced by about one half, and the rest of the tail at stage 63 after removing the notochord. This allowed us to identify many notochord-enriched, metamorphosis-induced genes at stage 63. Future studies on these genes should help to determine if they are regulated by TRß and play any roles in notochord regression.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Notocorda/crecimiento & desarrollo , RNA-Seq/métodos , Cola (estructura animal)/crecimiento & desarrollo , Xenopus laevis/crecimiento & desarrollo , Xenopus/genética , Animales
5.
Rinsho Ketsueki ; 57(7): 925-32, 2016 07.
Artículo en Japonés | MEDLINE | ID: mdl-27498740

RESUMEN

The acquisition of fundamental information by the use of recent technologies, including omics-based molecular analyses and total RNA sequencing, has opened the door to further advances in physiological studies on new animal models. Currently, we are endeavoring to develop a comparative hematology protocol in order to build a discovery platform. All vertebrates, with the exception of a few species, have universally peripheral erythrocytes and hemoglobin, suggesting erythropoiesis to be an evolutionary index.


Asunto(s)
Eritrocitos/citología , Eritropoyesis , Animales , Eritrocitos/metabolismo , Eritropoyetina/metabolismo , Humanos , Filogenia
6.
Mol Cell Endocrinol ; 586: 112193, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401883

RESUMEN

Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis. This involved complete degeneration of larval epithelium via programmed cell death and de novo formation of adult epithelium, with concurrent maturation of the muscles and connective tissue. Here, we will summarize our current understanding of the underlying molecular mechanisms, with a focus on more recent genetic and genome-wide studies.


Asunto(s)
Células Madre Adultas , Triyodotironina , Animales , Xenopus laevis , Xenopus/genética , Xenopus/metabolismo , Triyodotironina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Intestinos , Hormonas Tiroideas/metabolismo , Metamorfosis Biológica/genética , Organogénesis/genética , Mamíferos/metabolismo
7.
Vitam Horm ; 123: 483-502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37717995

RESUMEN

Anuran metamorphosis is perhaps the most drastic developmental change regulated by thyroid hormone (T3) in vertebrate. It mimics the postembryonic development in mammals when many organs/tissues mature into adult forms and plasma T3 level peaks. T3 functions by regulating target gene transcription through T3 receptors (TRs), which can recruit corepressor or coactivator complexes to target genes in the absence or presence of T3, respectively. By using molecular and genetic approaches, we and others have investigated the role of corepressor or coactivator complexes in TR function during the development of two highly related anuran species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis. Here we will review some of these studies that demonstrate a critical role of coactivator complexes, particularly those containing steroid receptor coactivator (SRC) 3, in regulating metamorphic rate and ensuring the completion of metamorphosis.


Asunto(s)
Receptores de Esteroides , Hormonas Tiroideas , Humanos , Adulto , Animales , Xenopus laevis , Xenopus , Proteínas Co-Represoras , Esteroides , Mamíferos
8.
Vitam Horm ; 123: 503-523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37717996

RESUMEN

Thyroid hormone (T3) plays critical roles in organ metabolism and development in vertebrates. Anuran metamorphosis is perhaps the most dramatic and best studied developmental process controlled by T3. Many changes in different organs/tissues during anuran metamorphosis resemble the maturation/remodeling of the corresponding organs/tissues during mammalian postembryonic development. The plasma T3 level peaks during both anuran metamorphosis and mammalian postembryonic development. T3 exerts its developmental function through transcriptional regulation via T3 receptors (TRs). Studies on the metamorphosis of two highly related anurans, pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, have led to a dual function model for TRs during development. This has been supported by strong molecular and genetic evidence. Here we review some of the evidence with a focus on more recent gene knockout studies in Xenopus tropicalis. These studies have not only supported the model but also revealed novel and TR subtype-specific roles during Xenopus development, particularly a critical role of TRα in controlling developmental timing and rate.


Asunto(s)
Mamíferos , Receptores de Hormona Tiroidea , Animales , Xenopus laevis , Xenopus , Receptores de Hormona Tiroidea/genética
9.
Front Endocrinol (Lausanne) ; 14: 1184013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265708

RESUMEN

Amphibian metamorphosis resembles mammalian postembryonic development, a period around birth when many organs mature into their adult forms and when plasma thyroid hormone (T3) concentration peaks. T3 plays a causative role for amphibian metamorphosis. This and its independence from maternal influence make metamorphosis of amphibians, particularly anurans such as pseudo-tetraploid Xenopus laevis and its highly related diploid species Xenopus tropicalis, an excellent model to investigate how T3 regulates adult organ development. Studies on intestinal remodeling, a process that involves degeneration of larval epithelium via apoptosis and de novo formation of adult stem cells followed by their proliferation and differentiation to form the adult epithelium, have revealed important molecular insights on T3 regulation of cell fate during development. Here, we review some evidence suggesting that T3-induced activation of cell cycle program is important for T3-induced larval epithelial cell death and de novo formation of adult intestinal stem cells.


Asunto(s)
Células Madre Adultas , Triyodotironina , Animales , Xenopus laevis/metabolismo , Xenopus/metabolismo , Triyodotironina/farmacología , Triyodotironina/metabolismo , Hormonas Tiroideas/metabolismo , Células Madre Adultas/metabolismo , Diferenciación Celular , Ciclo Celular , Apoptosis , Mamíferos/metabolismo
10.
iScience ; 26(4): 106301, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37153451

RESUMEN

Thyroid hormone (T3) regulates vertebrate organ development, growth, and metabolism through the T3 receptor (TR). Due to maternal influence in mammals, it has been difficult to study if and how T3 regulates liver development. Liver remodeling during anuran metamorphosis resembles liver maturation in mammals and is controlled by T3. We generated Xenopus tropicalis animals with both TRα and TRß genes knocked out and found that TR double knockout liver had developmental defects such as reduced cell proliferation and failure to undergo hepatocyte hypertrophy or activate urea cycle gene expression. RNA-seq analysis showed that T3 activated canonical Wnt pathway in the liver. Particularly, Wnt11 was activated in both fibroblasts and hepatic cells, and in turn, likely promoted the proliferation and maturation of hepatocytes. Our study offers new insights into not only how T3 regulates liver development but also on potential means to improve liver regeneration.

11.
Thyroid ; 33(4): 511-522, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36503276

RESUMEN

Background: Thyroid hormone (triiodothyronine [T3]) is essential for development and organ metabolism in all vertebrates. T3 has both genomic and nongenomic effects on target cells. While much has been learnt on its genomic effects via T3 receptors (TRs) in vertebrate development, mostly through TR-knockout and TR-knockin studies, little is known about the effects of T3 on gene expression in animals in the absence of TR. We have been studying Xenopus metamorphosis as a model for mammalian postembryonic development, a period around birth when plasma T3 level peaks and many organs/tissues mature into their adult forms. We have recently generated TR double knockout (TRDKO) Xenopus tropicalis animals. This offers an opportunity to compare the effects of T3 on global gene expression in tadpole tissues in the presence or absence of TR. Methods: We analyzed the effects of T3 on gene expression in tadpole tail and intestine by using RNA-seq analysis on wild-type and TRDKO tadpoles with or without T3 treatment. Results: We observed that removing TRs reduced the number of genes regulated by T3 in both organs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that T3 affected distinct biological processes and pathways in wild-type and TRDKO tadpoles. Many GO terms and KEGG pathways that were enriched among genes regulated in wild-type tissues are likely involved in mediating the effects of T3 on metamorphosis, for example, those related to development, stem cells, apoptosis, and cell cycle/cell proliferation. However, such GO terms and pathways were not enriched among T3-regulated genes in TRDKO tadpoles. Instead, in TRDKO tadpoles, GO terms and pathways related to "metabolism" and "immune response" were highly enriched among T3-regulated genes. We further observed strong divergence in the TR-independent nongenomic effects of T3 in the intestine and tail. Conclusions: Our data suggest that T3 has distinct and organ-dependent effects on gene expression in developing tadpoles. The TR-mediated effects are consistent with the metamorphic changes, in agreement with the fact that TR is necessary and sufficient to mediate the effects of T3 on metamorphosis. T3 appears to have a major effect on metabolism and immune response via TR-independent nongenomic processes.


Asunto(s)
Hormonas Tiroideas , Transcriptoma , Animales , Xenopus/metabolismo , Larva/genética , Larva/metabolismo , Hormonas Tiroideas/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Triyodotironina/farmacología , Triyodotironina/metabolismo , Genómica , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo
12.
Cell Biosci ; 13(1): 40, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823612

RESUMEN

BACKGROUND: Animal regeneration is the natural process of replacing or restoring damaged or missing cells, tissues, organs, and even entire body to full function. Studies in mammals have revealed that many organs lose regenerative ability soon after birth when thyroid hormone (T3) level is high. This suggests that T3 play an important role in organ regeneration. Intriguingly, plasma T3 level peaks during amphibian metamorphosis, which is very similar to postembryonic development in humans. In addition, many organs, such as heart and tail, also lose their regenerative ability during metamorphosis. These make frogs as a good model to address how the organs gradually lose their regenerative ability during development and what roles T3 may play in this. Early tail regeneration studies have been done mainly in the tetraploid Xenopus laevis (X. laevis), which is difficult for gene knockout studies. Here we use the highly related but diploid anuran X. tropicalis to investigate the role of T3 signaling in tail regeneration with gene knockout approaches. RESULTS: We discovered that X. tropicalis tadpoles could regenerate their tail from premetamorphic stages up to the climax stage 59 then lose regenerative capacity as tail resorption begins, just like what observed for X. laevis. To test the hypothesis that T3-induced metamorphic program inhibits tail regeneration, we used TR double knockout (TRDKO) tadpoles lacking both TRα and TRß, the only two receptor genes in vertebrates, for tail regeneration studies. Our results showed that TRs were not necessary for tail regeneration at all stages. However, unlike wild type tadpoles, TRDKO tadpoles retained regenerative capacity at the climax stages 60/61, likely in part by increasing apoptosis at the early regenerative period and enhancing subsequent cell proliferation. In addition, TRDKO animals had higher levels of amputation-induced expression of many genes implicated to be important for tail regeneration, compared to the non-regenerative wild type tadpoles at stage 61. Finally, the high level of apoptosis in the remaining uncut portion of the tail as wild type tadpoles undergo tail resorption after stage 61 appeared to also contribute to the loss of regenerative ability. CONCLUSIONS: Our findings for the first time revealed an evolutionary conservation in the loss of tail regeneration capacity at metamorphic climax between X. laevis and X. tropicalis. Our studies with molecular and genetic approaches demonstrated that TR-mediated, T3-induced gene regulation program is responsible not only for tail resorption but also for the loss of tail regeneration capacity. Further studies by using the model should uncover how T3 modulates the regenerative outcome and offer potential new avenues for regenerative medicines toward human patients.

13.
Commun Biol ; 5(1): 112, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132135

RESUMEN

Thyroid hormone (T3) regulates adult intestine development through T3 receptors (TRs). It is difficult to study TR function during postembryonic intestinal maturation in mammals due to maternal influence. We chose intestinal remodeling during Xenopus tropicalis metamorphosis as a model to study TR function in adult organ development. By using ChIP (chromatin immunoprecipitation)-Seq, we identified over 3000 TR-bound genes in the intestine of premetamorphic wild type or TRα (the major TR expressed during premetamorphosis)-knockout tadpoles. Surprisingly, cell cycle-related GO (gene ontology) terms and biological pathways were highly enriched among TR target genes even though the first major event during intestinal metamorphosis is larval epithelial cell death, and TRα knockout drastically reduced this enrichment. More importantly, treatment of tadpoles with cell cycle inhibitors blocked T3-induced intestinal remodeling, especially larval epithelial cell death, suggesting that TRα-dependent activation of cell cycle is important for T3-induced apoptosis during intestinal remodeling.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Muerte Celular/fisiología , Células Epiteliales/fisiología , Mucosa Intestinal/citología , Receptores alfa de Hormona Tiroidea/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Proteína Quinasa CDC2/genética , Muerte Celular/genética , Eliminación de Gen , Regulación de la Expresión Génica/fisiología , Mucosa Intestinal/fisiología , Larva/fisiología , Receptores alfa de Hormona Tiroidea/genética , Hormonas Tiroideas/genética , Xenopus
14.
J Exp Biol ; 214(Pt 6): 921-7, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21346119

RESUMEN

Oxygen is essential for the survival of animals. Red blood cells in the circulation, i.e. peripheral erythrocytes, are responsible for transporting oxygen to tissues. The regulation of erythropoiesis in vertebrates other than mammals is yet to be elucidated. Recently we identified erythropoietin, a primary regulator of erythropoiesis, in Xenopus laevis, which should enable us to identify target cells, including erythroid progenitors, and to investigate the production and development of erythroid cells in amphibians. Here, we established a semi-solid colony-forming assay in Xenopus laevis to clarify the existence of colony-forming unit-erythroid cells, the functional erythroid progenitors identified in vitro. Using this assay, we showed that recombinant xlEPO induces erythroid colony formation in vitro and detected an increased level of erythropoietin activity in blood serum during acute anemic stress. In addition, our study demonstrated the possible presence of multiple, non-xlEPO, factors in anemic serum supportive of erythroid colony formation. These results indicate that erythropoiesis mediated by erythropoietin is present in amphibian species and, furthermore, that the regulatory mechanisms controlling peripheral erythrocyte number may vary among vertebrates.


Asunto(s)
Células Precursoras Eritroides/citología , Células Precursoras Eritroides/efectos de los fármacos , Eritropoyesis/efectos de los fármacos , Eritropoyetina/farmacología , Xenopus laevis/metabolismo , Anemia/sangre , Animales , Técnicas de Cultivo de Célula , Ensayo de Unidades Formadoras de Colonias , Recuento de Eritrocitos , Células Precursoras Eritroides/metabolismo , Eritropoyetina/sangre , Hígado/citología , Hígado/metabolismo , Especificidad de Órganos/efectos de los fármacos , Receptores de Eritropoyetina/metabolismo , Proteínas Recombinantes , Xenopus laevis/sangre
15.
Thyroid ; 31(1): 128-142, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32515287

RESUMEN

Background: There are two highly conserved thyroid hormone (triiodothyronine [T3]) receptor (TR) genes, TRα and TRß, in all vertebrates, and the expression of TRα but not TRß is activated earlier than T3 synthesis during development. In human, high levels of T3 are present during the several months around birth, and T3 deficiency during this period causes severe developmental abnormalities including skeletal and intestinal defects. It is, however, difficult to study this period in mammals as the embryos and neonates depend on maternal supply of nutrients for survival. However, Xenopus tropicalis undergoes a T3-dependent metamorphosis, which drastically changes essentially every organ in a tadpole. Of interest is intestinal remodeling, which involves near complete degeneration of the larval epithelium through apoptosis. Concurrently, adult intestinal stem cells are formed de novo and subsequently give rise to the self-renewing adult epithelial system, resembling intestinal maturation around birth in mammals. We have previously demonstrated that T3 signaling is essential for the formation of adult intestinal stem cells during metamorphosis. Methods: We studied the function of endogenous TRα in the tadpole intestine by using knockout animals and RNA-seq analysis. Results: We observed that removing endogenous TRα caused defects in intestinal remodeling, including drastically reduced larval epithelial cell death and adult intestinal stem cell proliferation. Using RNA-seq on intestinal RNA from premetamorphic wild-type and TRα-knockout tadpoles treated with or without T3 for one day, before any detectable T3-induced cell death and stem cell formation in the tadpole intestine, we identified more than 1500 genes, which were regulated by T3 treatment of the wild-type but not TRα-knockout tadpoles. Gene Ontology and biological pathway analyses revealed that surprisingly, these TRα-regulated genes were highly enriched with cell cycle-related genes, in addition to genes related to stem cells and apoptosis. Conclusions: Our findings suggest that TRα-mediated T3 activation of the cell cycle program is involved in larval epithelial cell death and adult epithelial stem cell development during intestinal remodeling.


Asunto(s)
Células Madre Adultas/metabolismo , Ciclo Celular , Proliferación Celular , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Receptores alfa de Hormona Tiroidea/deficiencia , Triyodotironina/metabolismo , Proteínas de Xenopus/deficiencia , Xenopus/metabolismo , Células Madre Adultas/patología , Animales , Apoptosis , Células Epiteliales/patología , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/patología , Larva/genética , Larva/metabolismo , Metamorfosis Biológica , Transducción de Señal , Receptores alfa de Hormona Tiroidea/genética , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/genética
16.
Vitam Horm ; 116: 269-293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33752821

RESUMEN

Vertebrates organ development often takes place in two phases: initial formation and subsequent maturation into the adult form. This is exemplified by the intestine. In mouse, the intestine at birth has villus, where most differentiated epithelial cells are located, but lacks any crypts, where adult intestinal stem cells reside. The crypt is formed during the first 3 weeks after birth when plasma thyroid hormone (T3) levels are high. Similarly, in anurans, the intestine undergoes drastic remodeling into the adult form during metamorphosis in a process completely dependent on T3. Studies on Xenopus metamorphosis have revealed important clues on the formation of the adult intestine during metamorphosis. Here we will review our current understanding on how T3 induces the degeneration of larval epithelium and de novo formation of adult intestinal stem cells. We will also discuss the mechanistic conservations in intestinal development between anurans and mammals.


Asunto(s)
Células Madre Adultas , Metamorfosis Biológica , Animales , Anuros , Regulación del Desarrollo de la Expresión Génica , Intestinos , Ratones , Hormonas Tiroideas
17.
Thyroid ; 31(4): 692-702, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33076783

RESUMEN

Background: Thyroid hormone (triiodothyronine [T3]) plays an important role in regulating vertebrate developmental, cellular, and metabolic processes via T3 receptor (TR). Liganded TR recruit coactivator complexes that include steroid receptor coactivators (SRC1, SRC2 or SRC3), which are histone acetyltransferases, to T3-responsive promoters. The functions of endogenous coactivators during T3-dependent mammalian adult organ development remain largely unclear, in part, due to the difficulty to access and manipulate late-stage embryos and neonates. We use Xenopus metamorphosis as a model for postembryonic development in vertebrates. This process is controlled by T3, involves drastic changes in every organ/tissue, and can be easily manipulated. We have previously found that SRC3 was upregulated in the intestine during amphibian metamorphosis. Methods: To determine the function of endogenous SRC3 during intestinal remodeling, we have generated Xenopus tropicalis animals lacking a functional SRC3 gene and analyzed the resulting phenotype. Results: Although removing SRC3 had no apparent effect on external development and animal gross morphology, the SRC3 (-/-) tadpoles displayed a reduction in the acetylation of histone H4 in the intestine compared with that in wild-type animals. Further, the expression of TR target genes was also reduced in SRC3 (-/-) tadpoles during intestinal remodeling. Importantly, SRC3 (-/-) tadpoles had inhibited/delayed intestinal remodeling during natural and T3-induced metamorphosis, including reduced adult intestinal stem cell proliferation and apoptosis of larval epithelial cells. Conclusion: Our results, thus, demonstrate that SRC3 is a critical component of the TR-signaling pathway in vivo during intestinal remodeling.


Asunto(s)
Intestinos/crecimiento & desarrollo , Metamorfosis Biológica , Coactivador 3 de Receptor Nuclear/metabolismo , Células Madre/metabolismo , Triyodotironina/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animales , Apoptosis , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Coactivador 3 de Receptor Nuclear/genética , Transducción de Señal , Xenopus/genética , Xenopus/crecimiento & desarrollo , Proteínas de Xenopus/genética
18.
Cells ; 10(3)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802526

RESUMEN

Vertebrate postembryonic development is regulated by thyroid hormone (T3). Of particular interest is anuran metamorphosis, which offers several unique advantages for studying the role of T3 and its two nuclear receptor genes, TRα and TRß, during postembryonic development. We have recently generated TR double knockout (TRDKO) Xenopus tropicalis animals and reported that TR is essential for the completion of metamorphosis. Furthermore, TRDKO tadpoles are stalled at the climax of metamorphosis before eventual death. Here we show that TRDKO intestine lacked larval epithelial cell death and adult stem cell formation/proliferation during natural metamorphosis. Interestingly, TRDKO tadpole intestine had premature formation of adult-like epithelial folds and muscle development. In addition, T3 treatment of premetamorphic TRDKO tadpoles failed to induce any metamorphic changes in the intestine. Furthermore, RNA-seq analysis revealed that TRDKO altered the expression of many genes in biological pathways such as Wnt signaling and the cell cycle that likely underlay the inhibition of larval epithelial cell death and adult stem cell development caused by removing both TR genes. Our data suggest that liganded TR is required for larval epithelial cell degeneration and adult stem cell formation, whereas unliganded TR prevents precocious adult tissue morphogenesis such as smooth-muscle development and epithelial folding.


Asunto(s)
Células Madre Adultas/metabolismo , Proteínas Anfibias/genética , Células Epiteliales/metabolismo , Intestinos/citología , Larva/genética , Receptores de Hormona Tiroidea/genética , Hormonas Tiroideas/genética , Xenopus/genética , Células Madre Adultas/citología , Células Madre Adultas/efectos de los fármacos , Proteínas Anfibias/clasificación , Proteínas Anfibias/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Ontología de Genes , Redes Reguladoras de Genes , Intestinos/efectos de los fármacos , Intestinos/crecimiento & desarrollo , Larva/citología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Redes y Vías Metabólicas/genética , Metamorfosis Biológica , Anotación de Secuencia Molecular , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Receptores de Hormona Tiroidea/deficiencia , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología , Vía de Señalización Wnt/genética , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo
19.
Cell Biosci ; 10: 46, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231780

RESUMEN

BACKGROUND: Thyroid hormone (T3) is critical for development in all vertebrates. The mechanism underlying T3 effect has been difficult to study due to the uterus-enclosed nature of mammalian embryos. Anuran metamorphosis, which is dependent on T3 but independent of maternal influence, is an excellent model to study the roles of T3 and its receptors (TRs) during vertebrate development. We and others have reported various effects of TR knockout (TRα and TRß) during Xenopus tropicalis development. However, these studies were largely focused on external morphology. RESULTS: We have generated TRß knockout animals containing an out-frame-mutation of 5 base deletion by using the CRISPR/Cas9 system and observed that TRß knockout does not affect premetamorphic tadpole development. We have found that the basal expression of direct T3-inducible genes is increased but their upregulation by T3 is reduced in the intestine of premetamorphic homozygous TRß knockout animals, accompanied by reduced target binding by TR. More importantly, we have observed reduced adult stem cell proliferation and larval epithelial apoptosis in the intestine during T3-induced metamorphosis. CONCLUSIONS: Our data suggest that TRß plays a critical role in intestinal remodeling during metamorphosis.

20.
Artículo en Inglés | MEDLINE | ID: mdl-30740088

RESUMEN

Thyroid hormone (T3) is essential for vertebrate development, especially during the so-called postembryonic development, a period around birth in mammals when plasma T3 level peaks and many organs mature into their adult form. Compared to embryogenesis, postembryonic development is poorly studied in mammals largely because of the difficulty to manipulate the uterus-enclosed embryos and neonates. Amphibian metamorphosis is independent of maternal influence and can be easily manipulated for molecular and genetic studies, making it a valuable model to study postembryonic development in vertebrates. Studies on amphibian metamorphosis have been largely focused on the two highly related species Xenopus laevis and Xenopus tropicalis. However, adult X. laevis and X. tropicalis animals remain aquatic. This makes important to study metamorphosis in a species in which postmetamorphic frogs live on land. In this regard, the anuran Microhyla fissipes represents an alternative model for developmental and genetic studies. Here we have made use of the advances in sequencing technologies to investigate the gene expression profiles underlying the tail resorption program during metamorphosis in M. fissipes. We first used single molecule real-time sequencing to obtain 67, 939 expressed transcripts in M. fissipes. We next identified 4,555 differentially expressed transcripts during tail resorption by using Illumina sequencing on RNA samples from tails at different metamorphic stages. Bioinformatics analyses revealed that 11 up-regulated KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways and 88 Gene Ontology (GO) terms as well as 21 down-regulated KEGG pathways and 499 GO terms were associated with tail resorption. Our findings suggest that tail resorption in M. fissipes and X. laevis shares many programs. Future investigations on function and regulation of these genes and pathways should help to reveal the mechanisms governing amphibian tail resorption and adaptive evolution from aquatic to terrestrial life. Furthermore, analysis of the M. fissipes model, especially, on the changes in other organs associated with the transition from aquatic to terrestrial living, should help to reveal important mechanistic insights governing mammalian postembryonic developments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA