RESUMEN
Malaria proteases are attractive anti-malarial targets because of their roles in parasite development and infection. Falcipain-2 (FP-2), a food vacuole cysteine protease in Plasmodium falciparum, is involved in hemoglobin degradation and cleavage of cytoskeletal elements. To understand the route of trafficking and identify the signals involved in trafficking to food vacuole, we have generated transgenic parasites expressing green fluorescent protein (GFP) fusion proteins comprising of N-terminal regions of falcipain-2 fused to GFP. Using falcipain2-GFP chimeras and anti-falcipain-2 antibody, we show that falcipain-2 is trafficked through a classical vesicle mediated secretory pathway involving endoplasmic reticulum and Golgi-like apparatus. Photobleaching and confocal microscopy techniques reveal that falcipain-2 is carried to the food vacuole in the form of cytostomal vesicles. We identify an N-terminal sequence (1-120aa) of falcipain-2, sufficient for its transport to the food vacuole. Analysis of sequences of few other food vacuole targeted proteins suggests a common mechanism for protein trafficking to food vacuole of malaria parasite.
Asunto(s)
Cisteína Endopeptidasas/metabolismo , Eritrocitos/parasitología , Plasmodium falciparum/enzimología , Transporte de Proteínas , Vacuolas/enzimología , Animales , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Confocal , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
BACKGROUND: The human immunodeficiency virus type 1(HIV-1) is a complex retrovirus and the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV-1 Vpu protein is an oligomeric integral membrane protein essential for particle release, viral load and CD4 degradation. In silico models show Vpu to form pentamers with an ion channel activity. RESULTS: Using Vpu proteins from a primary subtype C and the pNL4-3 subtype B isolates of HIV-1, we show oligomerization of the full-length protein as well as its transmembrane (TM) domain by genetic, biochemical and biophysical methods. We also provide direct evidence of the presence of Vpu pentamers in a stable equilibrium with its monomers in vitro. This was also true for the TM domain of Vpu. Confocal microscopy localized Vpu to the endoplasmic reticulum and Golgi regions of the cell, as well as to post-Golgi vesicles. In fluorescence resonance energy transfer (FRET) experiments in live cells we show that Vpu oligomerizes in what appears to be either the Golgi region or intracellular vesicles, but not in the ER. CONCLUSION: We provide here direct evidence that the TM domain, is critical for Vpu oligomerization and the most favourable channel assembly is a pentamer. The Vpu oligomerization appears to be either the Golgi region or intracellular vesicles, but not in the ER.
Asunto(s)
VIH-1/química , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo , Secuencia de Aminoácidos , Animales , Biopolímeros , Línea Celular , Membrana Celular/química , Clonación Molecular , Retículo Endoplásmico/química , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Transferencia Resonante de Energía de Fluorescencia , Genes vpu , Aparato de Golgi/química , Aparato de Golgi/ultraestructura , Aparato de Golgi/virología , VIH-1/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/aislamiento & purificación , Humanos , Canales Iónicos/química , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Reguladoras y Accesorias Virales/aislamiento & purificaciónRESUMEN
The orf3a (also called X1 or U274) gene is the largest unique open reading frame in the severe acute respiratory syndrome coronavirus genome and has been proposed to encode a protein with three transmembrane domains and a large cytoplasmic domain. Recent work has suggested that the 3a protein may play a structural role in the viral life cycle, although the mechanisms for this remain uncharacterized. Here, the expression of the 3a protein in various in vitro systems is shown, it has been localized to the Golgi region and its membrane topology in transfected cells has been confirmed. Three potential caveolin-1-binding sites were reported to be present in the 3a protein. By using various biochemical, biophysical and genetic techniques, interaction of the 3a protein with caveolin-1 is demonstrated. Any one of the potential sites in the 3a protein was sufficient for this interaction. These results are discussed with respect to the possible roles of the 3a protein in the viral life cycle.