RESUMEN
The aim of this study was to determine the mechanisms driving the protective effects of squid ink polysaccharide (SIP) against cyclophosphamide (CP)-induced testicular damage, focusing on germ cells. In the testes of mice exposed to CP and/or SIP, the present study examined the levels of reactive oxygen species (ROS) and malondialdehyde, activity of superoxide dismutase levels, protein expression levels of B-cell lymphoma 2 (Bcl2), Bcl2-associated X protein (Bax), and total Caspase 3, activation of p-p38 and p-Akt proteins, and tissue morphology. The findings indicated that CP induced ROS production and oxidative stress, resulting in testicular damage. However, under administration of SIP, oxidative stress was impaired and the testicular toxicity induced by CP was weakened, which implied that SIP may have an important role in preventing chemotherapeutic damage to the male reproductive system via promoting antioxidant ability. Furthermore, the altered expression levels, including the upregulation of Bax and Caspase 3, downregulation of Bcl-2 and the increased Bax/Bcl-2 ratio, indicated that apoptosis occurred in CP exposed testes of mice; however, the alterations were reversed in mice treated with SIP. Moreover, in CP-exposed testes, p38 and Akt proteins were significantly phosphorylated (P<0.05), whereas in the testes of mice co-treated with SIP and CP, phosphorylation of the two proteins was inhibited, demonstrating that the two signalling pathways participated in the regulative processes of the deleterious effects caused by CP, and the preventive effects SIP mediated.
RESUMEN
In our recent reports, a squid ink polysaccharide (SIP) was found having preventive activity against cyclophosphamide induced damage in mouse testis and ovary. Here we further reveal the regulative mechanism of SIP against chemical toxicity on testis. Leydig cells exposed to acrolein (ACR) underwent apoptosis at 12h and 24h. Before apoptosis, cells occurred autophagy that was confirmed by high autophagic rate and Beclin-1 protein content at 3h. PI3K/Akt and p38 MAPK signal pathways involved in the regulatory mechanisms. These outcomes of ACR were recovered completely by SIP, which was demonstrated by attenuated disruption of redox equilibrium and increased testosterone production, through suppressing ACR-caused autophagy and apoptosis regulated by PI3K/Akt and p38 MAPK signal pathways in Leydig cells. Summarily, autophagy occurred before apoptosis caused by ACR-activated p38 MAPK and PI3K/Akt pathways were blocked by SIP, resulting in survival and functional maintenance of Leydig cells.
Asunto(s)
Apoptosis , Autofagia , Glicosaminoglicanos/farmacología , Células Intersticiales del Testículo/efectos de los fármacos , Sepia/química , Acroleína , Animales , Células Cultivadas , Masculino , Ratones , Transducción de SeñalRESUMEN
OBJECTIVES: This paper aims to investigate synergistic inhibition of polysaccharide from Sepia esculenta ink (SIP), a newly isolated marine polysaccharide in our laboratory, on breast cancer MDA-MB-231 cells exposed to cisplatin. MATERIALS AND METHODS: Cell viability of MDA-MB-231 cells was determined by CCK 8 assay. Median-effect concentration was analyzed using Chou-Talalay method that was also subjected to determine cell inhibition ratio and combined index, as well as interaction between SIP and cisplatin. Proliferation and migration abilities were detected with plate colony formation assay and cell wound scratch assay, respectively. Expression of MMP-2 and MMP-9 proteins was measured with Western blot assay. RESULTS: Data showed that SIP not only suppressed proliferation and migration of MDA-MB-231 cells, and expression of MMP-2 and MMP-9 proteins, also promoted inhibition of cisplatin on proliferation, migration and MMPs expression of MDA-MB-231 cells, which indicates synergy inhibition of drug combination of SIP and cisplatin on breast cancer cells. The median-effect concentrations of cisplatin and SIP were 4.9 and 1659.6 µg/ml, respectively. Whereas the concentration of combination drug was 158.5 µg/ml. The data indicated that drug combination can decrease dosages of the two single agents, especially the usual dosage of cisplatin. CONCLUSION: This research demonstrated that SIP repressed proliferation and metastasis of MDA-MB-231 cells and promoted anticancer effect of cisplatin on the breast cancer cells. The data suggested that SIP is a potential natural drug that can be used as an auxiliary medicine alongside chemotherapy in treating breast cancer.
RESUMEN
On the basis of our findings about chemo-preventive roles of squid ink polysaccharide and the well-known toxicity of cyclophosphamide (CP) on female gonad, this research investigated the protective effects of a novel polysaccharide from Sepia esculenta ink (SEP) on the ovarian failure resulting from CP, as well as the action mechanisms underpinning this. The results indicated that CP destroyed the ovaries of mice which caused depletion of various follicles, and led to a reduction in estradiol content, increases in FSH and LH contents in sera, decreases in ovary and uterus masses and their relative mass ratios, disruption of the ultrastructure of granulosa cells, as well as induction of apoptosis and autophagy via p38 MAPK and PI3K/Akt signaling pathways. The phenomenon resulted in ovarian failure. However, SEP exposure altered the negative effects completely. The data indicated that SEP can effectively prevent ovarian failure CP caused in mice by inhibiting the p38 MAPK signaling pathway and activating the PI3K/Akt signaling pathway as regulated by CP. SEP was a novel polysaccharide from Sepia esculenta ink with a unique primary structure mainly composed of GalN and Ara that accounted for almost half of all monosaccharides: their ratio was nearly one-to-one. Besides, the polysaccharide contained a small number of Fuc and tiny amounts of Man, GlcN, GlcA, and GalA.