Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metab Brain Dis ; 36(8): 2329-2341, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34665375

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases among the elderly people. The T2DM increases the risk of cardio-cerebrovascular disease (CCD), and the main pathological change of the CCD is atherosclerosis (AS). Meanwhile, the carbonic anhydrases (CAs) are involved in the formation and progression of plaques in AS. However, the exact physiological mechanism of carbonic anhydrase III (CAIII) has not been clear yet, and there are also no correlation study between CAIII protein and T2DM with CCD. The 8-week old diabetic mice (db/db-/- mice) and wild-type mice (wt mice) were feed by a normal diet till 32 weeks, and detected the carotid artery vascular opening angle using the method of biomechanics; The changes of cerebral cortex and myocardium were watched by the ultrastructure, and the autophagy were observed by electron microscope; The tissue structure, inflammation and cell injury were observed by Hematoxylin and eosin (HE) staining; The apoptosis of cells were observed by TUNEL staining; The protein levels of CAIII, IL-17, p53 were detected by immunohistochemical and Western Blot, and the Beclin-1, LC3, NF-κB were detected by Western Blot. All statistical analysis is performed using PRISM software. Compared with wt mice, db/db-/- mice' carotid artery open angle increased significantly. Electron microscope results indicated that autophagy in db/db-/- mice cerebral cortex and heart tissue decreased and intracellular organelle ultrastructure were damaged. HE staining indicated that, db/db-/- mice' cerebral cortex and heart tissue stained lighter, inflammatory cells infiltration, cell edema were obvious, myocardial fibers were disorder, and myocardial cells showed different degrees of degeneration. Compared with wt mice, TUNEL staining showed that there was obviously increase in db/db-/- mice cortex and heart tissue cell apoptosis. The results of immunohistochemistry and Western Blot indicated that CAIII, Beclin-1 and LC3II/I expression levels conspicuously decreased in cortex and heart tissue of db/db-/- mice, and the expression level of IL-17, NF-κB and p53 obviously increased. The carotid artery' vascular stiffness was increased and which was probably related with formation of AS in diabetic mice. And the autophagy participated in the occurrence and development of diabetic CCD. CAIII protein might somehow be involved in the regulation of autophagy probably through affecting cell apoptosis and inflammation, but the underlying mechanism remains to be further studied.


Asunto(s)
Anhidrasa Carbónica III , Trastornos Cerebrovasculares , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Autofagia , Ratones
2.
Clin Sci (Lond) ; 133(20): 2045-2059, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31654061

RESUMEN

BACKGROUND: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. METHODS: Purified recombinant human inhibitor of κB kinase subunit ß (IKKß) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. RESULTS: We showed that hydrogen sulfide (H2S) inhibited IKKß activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKß activity directly via sulfhydrating IKKß at cysteinyl residue 179 (C179) in purified recombinant IKKß protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKß inactivation. Furthermore, to demonstrate the significance of IKKß sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKß. In purified IKKß protein, C179S mutation of IKKß abolished H2S-induced IKKß sulfhydration and the subsequent IKKß inactivation. In human PAECs, C179S mutation of IKKß blocked H2S-inhibited IKKß activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKß abolished the inhibitory effect of H2S on IKKß activation and pulmonary vascular inflammation and remodeling. CONCLUSION: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKß via sulfhydrating IKKß at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


Asunto(s)
Cisteína/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hipertensión Pulmonar/metabolismo , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Arteria Pulmonar/metabolismo , Animales , Células Cultivadas , Cisteína/deficiencia , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Sulfuro de Hidrógeno/antagonistas & inhibidores , Hipertensión Pulmonar/patología , Inflamación/patología , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Monocrotalina/análogos & derivados , Monocrotalina/farmacología , FN-kappa B/metabolismo , Arteria Pulmonar/citología , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
3.
BMC Nephrol ; 19(1): 140, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907098

RESUMEN

BACKGROUND: The mechanism of podocyte apoptosis is not fully understood. In addition, the role of the inositol 1,4,5-triphosphate receptor (IP3R)/glucose-regulated protein 75 (Grp75)/voltage-dependent anion channel 1 (VDAC1)/mitochondrial calcium uniporter (MCU) calcium regulation axis, which is located at sites of endoplasmic reticulum (ER) mitochondria coupling, in the mechanism of podocyte apoptosis is unclear. This study aimed to understand the roles of this axis in podocyte apoptosis and explore potential targets for podocyte protection. METHODS: The expression of IP3R, Grp75, VDAC1, and MCU and mitochondrial Ca2+ were analyzed during Adriamycin- or angiotensin II-induced apoptosis in cultured mouse podocytes. The interaction between IP3R, Grp75, and VDAC1 was investigated using co-immunoprecipitation experiments. The effects of IP3R, Grp75, and MCU agonists and antagonists on mitochondrial Ca2+ and apoptosis were investigated in cultured podocytes. The podocyte-protective effects of an MCU inhibitor were further investigated in rats with Adriamycin-induced nephropathy. RESULTS: Increased expression of IP3R, Grp75, VDAC1 and MCU, enhanced interaction among the IP3R-Grp75-VDAC1 complex, mitochondrial Ca2+ overload, and increased active caspase-3 levels were confirmed during Adriamycin- or angiotensin II-induced mouse podocyte apoptosis. Agonists of this axis facilitated mitochondrial Ca2+ overload and podocyte apoptosis, whereas specific antagonists against IP3R, Grp75, or MCU prevented mitochondrial Ca2+ overload and podocyte apoptosis. A specific MCU inhibitor prevented Adriamycin-induced proteinuria and podocyte foot process effacement in rats. CONCLUSIONS: This study identified a novel pathway in which the IP3R-Grp75-VDAC1-MCU calcium regulation axis mediated podocyte apoptosis by facilitating mitochondrial Ca2+ overload. Antagonists that inhibit Ca2+ transfer from ER to mitochondria protected mouse podocytes from apoptosis. An MCU inhibitor protected podocytes and decreased proteinuria in rats with Adriamycin-induced nephropathy. Therefore, antagonists to this pathway have promise as novel podocyte-protective drugs.


Asunto(s)
Calcio/fisiología , Doxorrubicina/toxicidad , Enfermedades Renales/metabolismo , Compuestos Macrocíclicos/farmacología , Oxazoles/farmacología , Podocitos/metabolismo , Proteinuria/metabolismo , Adenosilhomocisteinasa/antagonistas & inhibidores , Adenosilhomocisteinasa/biosíntesis , Animales , Antibióticos Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Canales de Calcio/biosíntesis , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/biosíntesis , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Compuestos Macrocíclicos/uso terapéutico , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/biosíntesis , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxazoles/uso terapéutico , Podocitos/efectos de los fármacos , Proteinuria/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Canal Aniónico 1 Dependiente del Voltaje/antagonistas & inhibidores , Canal Aniónico 1 Dependiente del Voltaje/biosíntesis
4.
Metab Brain Dis ; 33(6): 1887-1897, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30187180

RESUMEN

To assess whether EGb761 could protect elderly diabetic mice with cognitive disorders and explore the role of beclin-1-mediated autophagy in these protective effects. Two-month-old male db/db-/- mice and wild-type C57/BL6 mice were randomly divided into six groups: db/db-/- control, db/db-/- 50 mg, db/db-/- 100 mg, wild-type (WT) control, WT 50 mg, and WT 100 mg. EGb761 (50 mg/kg or 100 mg/kg of bodyweight) was given by gavage once a day for 1 month from the age of 6 months. Y-maze and social choice tests were performed at 8th months. The blood pressure was measured. The imaging changes in the brain were measured using magnetic resonance imaging (MRI). The expression and distribution of beclin-1, LC3, and NF-κB were detected using immunohistochemistry staining and western blotting. Ultrastructure alterations in the hippocampus were observed using transmission electron microscopy. Compared with WT mice, the learning ability, memory and overall cognitive function of db/db-/- mice decreased (P < 0.05), and EGb761 could significantly improve the learning and memory function of db/db-/- mice (P < 0.05). EGb761 significantly improved systolic blood pressure in db/db-/- mice (P < 0.01). In addition, fMRI-bold showed a decline in the hippocampus of mice in the db/db-/- group compared with WT. EGb761 could improve these above changes. Immunohistochemistry staining and western blotting confirmed that EGb761 significantly increased beclin-1 and reduced LC3-II/I levels in the brains of db/db-/- mice (P < 0.05). NF-κB levels were obviously higher in the db/db-/- group than that in the WT group, and EGb761 significantly reduced NF-κB levels in db/db-/- mice (P < 0.05). There was a trend of increased autophagosomes in db/db-/- mice, but EGb761 did not change obviously the number of autophagosomes. Compared with normal aged WT mice, aging db/db-/- mice had more common complications of cerebral small vessel disease and cognitive dysfunction. EGb761 could significantly improve the cognitive function of aging db/db-/- mice via a mechanism that may involve the regulation of beclin-1, LC3, and NF-κB.


Asunto(s)
Envejecimiento/metabolismo , Beclina-1/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/uso terapéutico , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Beclina-1/agonistas , Disfunción Cognitiva/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Relación Dosis-Respuesta a Droga , Ginkgo biloba , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/antagonistas & inhibidores , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
5.
Nitric Oxide ; 46: 192-203, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25617698

RESUMEN

BACKGROUND: The study was designed to explore the significance of endogenous H2S in the development of high-salt-induced hypertension in rats. METHODS: High-salt-induced hypertension rat model was made by feeding Dahl rat high-salt diet containing 8% NaCl for 8 weeks with SD rats as control. SBP and aorta structure in rats were observed. Endogenous H2S content and expression of cystathionine ß-lyase (CBS), cystathionine γ-lyase and mercaptopyruvate sulfurtransferase in renal tissues were detected. Mechanisms for the impact of high-salt on CBS/H2S in renal tissues were studied, targeting HIF-1α pathway. The effect of H2S on RAS in serum and renal tissue of rats were tested. RESULTS: High-salt reduced endogenous H2S content and inhibited the expression of CBS in renal tissue in salt-sensitive Dahl rats. H2S donor, however, inhibited salt-sensitive hypertension, reversed aortic structural remodeling and inhibited activation of the RAS system in renal tissues in Dahl rats. Expression of HIF-1α was decreased but expression of PHD2 was increased in renal tissue of Dahl rats with high-salt diet, whereas they did not alter in renal tissue of SD rats with high-salt diet. Ex vivo experiment showed that inhibitor of HIF-1α degradation could rescue down-regulated CBS/H2S pathway in renal tissue of Dahl rats with high-salt. In contrast, inhibitor of HIF-1α activity decreased the CBS/H2S pathway in the renal tissue of SD rats treated with high-salt. CONCLUSIONS: Down-regulated CBS/H2S pathway in renal tissues under high-salt insult might be an important pathogenesis of salt-sensitive hypertension.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Hipertensión/metabolismo , Riñón/efectos de los fármacos , Liasas/metabolismo , Cloruro de Sodio/efectos adversos , Animales , Hipertensión/inducido químicamente , Riñón/metabolismo , Masculino , Ratas , Ratas Endogámicas Dahl , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio/administración & dosificación
6.
Redox Biol ; 71: 103124, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503216

RESUMEN

OBJECTIVE: Cardiomyocyte senescence is an important contributor to cardiovascular diseases and can be induced by stressors including DNA damage, oxidative stress, mitochondrial dysfunction, epigenetic regulation, etc. However, the underlying mechanisms for the development of cardiomyocyte senescence remain largely unknown. Sulfur dioxide (SO2) is produced endogenously by aspartate aminotransferase 2 (AAT2) catalysis and plays an important regulatory role in the development of cardiovascular diseases. The present study aimed to explore the effect of endogenous SO2 on cardiomyocyte senescence and the underlying molecular mechanisms. APPROACH AND RESULTS: We interestingly found a substantial reduction in the expression of AAT2 in the heart of aged mice in comparison to young mice. AAT2-knockdowned cardiomyocytes exhibited reduced SO2 content, elevated expression levels of Tp53, p21Cip/Waf, and p16INk4a, enhanced SA-ß-Gal activity, and elevated level of γ-H2AX foci. Notably, supplementation with a SO2 donor ameliorated the spontaneous senescence phenotype and DNA damage caused by AAT2 deficiency in cardiomyocytes. Mechanistically, AAT2 deficiency suppressed the sulphenylation of signal transducer and activator of transcription 3 (STAT3) facilitated its nuclear translocation and DNA-binding capacity. Conversely, a mutation in the cysteine (Cys) 259 residue of STAT3 blocked SO2-induced STAT3 sulphenylation and subsequently prevented the inhibitory effect of SO2 on STAT3-DNA-binding capacity, DNA damage, and cardiomyocyte senescence. Additionally, cardiomyocyte (cm)-specific AAT2 knockout (AAT2cmKO) mice exhibited a deterioration in cardiac function, cardiomegaly, and cardiac aging, whereas supplementation with SO2 donors mitigated the cardiac aging and remodeling phenotypes in AAT2cmKO mice. CONCLUSION: Downregulation of the endogenous SO2/AAT2 pathway is a crucial pathogenic mechanism underlying cardiomyocyte senescence. Endogenous SO2 modifies STAT3 by sulphenylating Cys259, leading to the inhibition of DNA damage and the protection against cardiomyocyte senescence.


Asunto(s)
Enfermedades Cardiovasculares , Cisteína , Ratones , Animales , Cisteína/metabolismo , Miocitos Cardíacos/metabolismo , Dióxido de Azufre/farmacología , Enfermedades Cardiovasculares/metabolismo , Factor de Transcripción STAT3/metabolismo , Epigénesis Genética , ADN/metabolismo , Senescencia Celular
7.
Inhal Toxicol ; 24(13): 918-27, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23121301

RESUMEN

Epidemiologic studies have reported the association between fine particles (aerodynamic diameter ≤ 2.5 µm; PM2.5) and health effects, but the immunological mechanisms are not clear. To investigate the dose and time-dependent role of toll-like receptor (TLR) and Th1/Th2 shift in local and systemic inflammation induced by PM2.5, mice were subjected to intratracheal instillation of 2.5, 5, or 10 mg/kg PM2.5 in this study. After 24 h, 72 h, 7 days, and 14 days, mice were sacrificed to measure TLR2 and TLR4 expressions and Th1/Th2 related cytokines in bronchoalveolar lavage fluid (BALF) and peripheral blood. Histopathological changes in lung were also examined. Inflammatory infiltration and macrophages with engulfed particles were found by lung histopathology after PM2.5 exposure. TLR4 positive cells decreased in BALF but increased in blood at 24 h after the exposure. The low percentage of TLR4 positive cells continued to day 14 in BALF, but recovered at day 7 and decreased further to lower than the control value at day 14 in blood. TLR2 positive cell changed similar to TLR4 in BALF on the dose effects. In BALF at 24 h after the exposure, the Th2 related cytokines IL-5 and IL-10 increased dose-dependently; and in blood, the Th2 related cytokines IL-4, IL-5, and IL-10 also increased. These results suggest that acute exposure of PM2.5 leads to acute inflammatory responses locally and systemically in mice. TLR2 and TLR4 are involved in this process and PM2.5 can drive a Th2-biased immune response.


Asunto(s)
Contaminantes Ambientales/toxicidad , Material Particulado/toxicidad , Neumonía/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/sangre , Citocinas/inmunología , Contaminantes Ambientales/química , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Material Particulado/química , Neumonía/inducido químicamente , Neumonía/patología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
8.
BMC Neurol ; 11: 76, 2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21699716

RESUMEN

BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is a devastating form of stroke with the high mortality twofold to sixfold higher than that for ischemic stroke. But the treatment of haematomas within the basal ganglia continues to be a matter of debate among neurologists and neurosurgeons. The purpose of this study is to judge the clinical value of minimally invasive stereotactic puncture therapy (MISPT) on acute ICH. METHODS: A prospective controlled study was undertaken. The clinical trial was in compliance with the WMA Declaration of Helsinki-Ethical Principles for Medical Research Involving Human Subjects. According to the enrollment criterion, there were 168 acute ICH cases analyzed, of which 90 cases were performed by MISPT (MISPT group, MG) and 78 cases by Conventional craniotomy (CC group, CG), by means of compare of Glasgow Coma Scale (GCS) score, postoperative complications (PC) and rebleeding incidence (RI), moreover, long-term outcome of 1 year postoperation judged by Glasgow Outcome Scale (GOS), Barthel Index (BI), modified Rankin Scale (mRS) and case fatality(CF). RESULTS: MG patients showed obvious amelioration in GCS score compared with that of CG. The total incidence of PC in MG decreased obviously compared with that of CG. The incidences of rebleeding in MG and CG were 10.0% and 15.4% respectively. There was no obvious difference between CFs of MG and CG. For three parameters representing long-term outcome, the GOS, BI and mRS in MG were ameliorated significantly than that of CG. CONCLUSION: These data suggested that the advantage of MISPT was displayed in minute trauma and safety, and seemed to be feasible and to had a trend towards improved long-term outcome. TRIAL REGISTRATION: The Australian New Zealand Clinical Trials Registry (ANZCTR), the registration number: ACTRN12610000945022.


Asunto(s)
Hemorragia Cerebral/cirugía , Craneotomía/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Técnicas Estereotáxicas , Craneotomía/efectos adversos , Femenino , Escala de Coma de Glasgow , Escala de Consecuencias de Glasgow , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Quirúrgicos Mínimamente Invasivos/efectos adversos , Complicaciones Posoperatorias/epidemiología , Técnicas Estereotáxicas/efectos adversos
9.
Oxid Med Cell Longev ; 2021: 5530907, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484563

RESUMEN

Although taurine is known to exert an antihypertensive effect, it is unclear whether it is involved in the mechanism for hypertension-related target organ injury. To reveal the role of endogenous taurine in renal injury formation during salt-sensitive hypertension and clarify its mechanisms, both salt-sensitive Dahl rats and salt-resistant SS-13BN rats were fed a high-salt diet (8% NaCl) and given 2% taurine for 6 weeks. Rat systolic blood pressure (SBP) was measured by the tail-cuff method and artery catheterization. Kidney ultrastructure was observed under an electron microscope. Taurine content and mRNA and protein levels of taurine synthases, cysteine dioxygenase type 1 (CDO1) and cysteine sulfinic acid decarboxylase (CSAD), were decreased in Dahl rats fed a high-salt diet. However, taurine supplementation and the resulting increase in renal taurine content reduced the increased SBP and improved renal function and structural damage in high-salt diet-fed Dahl rats. In contrast, taurine did not affect SS-13BN SBP and renal function and structure. Taurine intervention increased the renal H2S content and enhanced cystathionine-ß-synthase (CBS) expression and activity in Dahl rats fed a high-salt diet. Taurine reduced the renin, angiotensin II, and aldosterone contents and the levels of oxidative stress indices in Dahl rat renal tissues but increased antioxidant capacity, antioxidant enzyme activity, and protein expression. However, taurine failed to achieve this effect in the renal tissue of SS-13BN rats fed a high-salt diet. Pretreatment with the CBS inhibitor HA or renal CBS knockdown inhibited H2S generation and subsequently blocked the effect of taurine on renin, superoxide dismutase 1 (SOD1), and superoxide dismutase 2 (SOD2) levels in high-salt-stimulated Dahl renal slices. In conclusion, the downregulation of endogenous taurine production resulted in a decrease in the renal CBS/H2S pathway. This decrease subsequently promoted renin-angiotensin-aldosterone system (RAAS) activation and oxidative stress in the kidney, ultimately contributing to renal injury in salt-sensitive Dahl rats.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Cistationina betasintasa/metabolismo , Hipertensión/tratamiento farmacológico , Riñón/patología , Taurina/uso terapéutico , Animales , Regulación hacia Abajo , Masculino , Ratas , Ratas Endogámicas Dahl , Taurina/farmacología
10.
Diabetes Metab Syndr Obes ; 14: 3221-3228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34285529

RESUMEN

AIM: Metabolic inflammation syndrome (MIS) can lead to a series of complications, but its exact inflammatory mechanism is still unclear. The aim of this study was to explore the correlation between heparanase (HPA) and MIS, and the close relationship between HPA and other chronic low-grade inflammation index, such as C-reactive protein (CRP) and interleukin-6 (IL-6). METHODS: A total of 105 patients with MIS in the physical examination population of Huashan Hospital affiliated to Fudan University from May to June 2018 were selected as the MIS group, and 52 patients who were relatively healthy during the same period were used as the control group. The basic clinical data of the selected candidates were collected, the levels of serum HPA, CRP and IL-6 were measured by ELISA, and the levels of blood glucose and blood lipids were also detected. RESULTS: Compared with the control group, the levels of HPA, CRP, IL-6, FBG, HbA1C, and TG of MIS group were all significantly elevated (all P<0.05), and HDL-C levels were considerably reduced (P<0.05). Correlation analysis showed that there was a noticeably positive correlation between serum HPA level and CRP, IL-6 levels (P<0.05). CONCLUSION: Higher HPA levels might play a certain role in the occurrence and development of MIS. There was a certain close correlation between serum HPA level and CRP and IL-6 levels, and which indicated that HPA was involved in the chronic low-grade inflammatory reaction process of MIS.

11.
Redox Biol ; 48: 102192, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34818607

RESUMEN

OBJECTIVE: This study aimed to determine the communicational pattern of gaseous signaling molecules sulfur dioxide (SO2) and nitric oxide (NO) between vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs), and elucidate the compensatory role and significance of endogenous SO2 in the development of hypertension due to NO deficiency. APPROACH AND RESULTS: Blood pressure was monitored by the tail-cuff and implantable physiological signal telemetry in L-nitro-arginine methyl ester (l-NAME)-induced hypertensive mice, and structural alterations of mouse aortic vessels were detected by the elastic fiber staining method. l-NAME-treated mice showed decreased plasma NO levels, increased SO2 levels, vascular remodeling, and increased blood pressure, and application of l-aspartate-ß-hydroxamate, which inhibits SO2 production, further aggravated vascular structural remodeling and increased blood pressure. Moreover, in a co-culture system of HAECs and HASMCs, NO from HAECs did not influence aspartate aminotransferase (AAT)1 protein expression but decreased AAT1 activity in HASMCs, thereby resulting in the inhibition of endogenous SO2 production. Furthermore, NO promoted S-nitrosylation of AAT1 protein in HASMCs and purified AAT1 protein. Liquid chromatography with tandem mass spectrometry showed that the Cys192 site of AAT1 purified protein was modified by S-nitrosylation. In contrast, dithiothreitol or C192S mutations in HASMCs blocked NO-induced AAT1 S-nitrosylation and restored AAT1 enzyme activity. CONCLUSION: Endothelium-derived NO inhibits AAT activity by nitrosylating AAT1 at the Cys192 site and reduces SO2 production in HASMCs. Our findings suggest that SO2 acts as a compensatory defense system to antagonize vascular structural remodeling and hypertension when the endogenous NO pathway is disturbed.

12.
Oxid Med Cell Longev ; 2021: 5577634, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953829

RESUMEN

Hypoxic pulmonary vascular remodelling (PVR) is the major pathological basis of aging-related chronic obstructive pulmonary disease and obstructive sleep apnea syndrome. The pulmonary artery endothelial cell (PAEC) inflammation, and pulmonary artery smooth muscle cell (PASMC) proliferation, hypertrophy and collagen remodelling are the important pathophysiological components of PVR. Endogenous sulfur dioxide (SO2) was found to be a novel gasotransmitter in the cardiovascular system with its unique biological properties. The study was aimed to investigate the role of endothelial cell- (EC-) derived SO2 in the progression of PAEC inflammation, PASMC proliferation, hypertrophy and collagen remodelling in PVR and the possible mechanisms. EC-specific aspartic aminotransferase 1 transgenic (EC-AAT1-Tg) mice were constructed in vivo. Pulmonary hypertension was induced by hypoxia. Right heart catheterization and echocardiography were used to detect mouse hemodynamic changes. Pathologic analysis was performed in the pulmonary arteries. High-performance liquid chromatography was employed to detect the SO2 content. Human PAECs (HPAECs) with lentiviruses containing AAT1 cDNA or shRNA and cocultured human PASMCs (HPASMCs) were applied in vitro. SO2 probe and enzyme-linked immunosorbent assay were used to detect the SO2 content and determine p50 activity, respectively. Hypoxia caused a significant reduction in SO2 content in the mouse lung and HPAECs and increases in right ventricular systolic pressure, pulmonary artery wall thickness, muscularization, and the expression of PAEC ICAM-1 and MCP-1 and of PASMC Ki-67, collagen I, and α-SMA (p < 0.05). However, EC-AAT1-Tg with sufficient SO2 content prevented the above increases induced by hypoxia (p < 0.05). Mechanistically, EC-derived SO2 deficiency promoted HPAEC ICAM-1 and MCP-1 and the cocultured HPASMC Ki-67 and collagen I expression, which was abolished by andrographolide, an inhibitor of p50 (p < 0.05). Meanwhile, EC-derived SO2 deficiency increased the expression of cocultured HPASMC α-SMA (p < 0.05). Taken together, these findings revealed that EC-derived SO2 inhibited p50 activation to control PAEC inflammation in an autocrine manner and PASMC proliferation, hypertrophy, and collagen synthesis in a paracrine manner, thereby inhibiting hypoxic PVR.


Asunto(s)
Colágeno/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Arteria Pulmonar/metabolismo , Remodelación Vascular/fisiología , Animales , Proliferación Celular , Humanos , Ratones , Ratones Transgénicos
13.
CNS Neurosci Ther ; 27(4): 484-496, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33459523

RESUMEN

AIMS: Type 2 diabetes mellitus (T2DM) can lead to brain dysfunction and a series of neurological complications. Previous research demonstrated that a novel palmitic acid (5-PAHSA) exerts effect on glucose tolerance and chronic inflammation. Autophagy was important in diabetic-related neurodegeneration. The aim of the present study was to investigate whether 5-PAHSA has specific therapeutic effects on neurological dysfunction in diabetics, particularly with regard to autophagy. METHODS: 5-PAHSA was successfully synthesized according to a previously described protocol. We then carried out a series of in vitro and in vivo experiments using PC12 cells under diabetic conditions, and DB/DB mice, respectively. PC12 cells were treated with 5-PAHSA for 24 h, while mice were administered with 5-PAHSA for 30 days. At the end of each experiment, we analyzed glucolipid metabolism, autophagy, apoptosis, oxidative stress, cognition, and a range of inflammatory factors. RESULTS: Although there was no significant improvement in glucose metabolism in mice administered with 5-PAHSA, ox-LDL decreased significantly following the administration of 5-PAHSA in serum of DB/DB mice (p < 0.0001). We also found that the phosphorylation of m-TOR and ULK-1 was suppressed in both PC12 cells and DB/DB mice following the administration of 5-PAHSA (p < 0.05 and p < 0.01), although increased levels of autophagy were only observed in vitro (p < 0.05). Following the administration of 5-PAHSA, the concentration of ROS decreased in PC12 cells and the levels of CRP increased in high-dose group of 5-PAHSA (p < 0.01). There were no significant changes in terms of apoptosis, other inflammatory factors, or cognition in DB/DB mice following the administration of 5-PAHSA. CONCLUSION: We found that 5-PAHSA can enhance autophagy in PC12 cells under diabetic conditions. Our data demonstrated that 5-PAHSA inhibits phosphorylation of the m-TOR-ULK1 pathway and suppressed oxidative stress in PC12 cells, and exerted influence on lipid metabolism in DB/DB mice.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácido Palmítico/farmacología , Ácidos Esteáricos/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/uso terapéutico , Células PC12 , Ácido Palmítico/uso terapéutico , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ácidos Esteáricos/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo
14.
Front Immunol ; 9: 882, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760703

RESUMEN

Endogenous hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as important regulators to control endothelial cell function and protect endothelial cell against various injuries. In our present study, we aimed to investigate the effect of endogenous H2S on the SO2 generation in the endothelial cells and explore its significance in the endothelial inflammation in vitro and in vivo. The human umbilical vein endothelial cell (HUVEC) line (EA.hy926), primary HUVECs, primary rat pulmonary artery endothelial cells (RPAECs), and purified aspartate aminotransferase (AAT) protein from pig heart were used for in vitro experiments. A rat model of monocrotaline (MCT)-induced pulmonary vascular inflammation was used for in vivo experiments. We found that endogenous H2S deficiency caused by cystathionine-γ-lyase (CSE) knockdown increased endogenous SO2 level in endothelial cells and enhanced the enzymatic activity of AAT, a major SO2 synthesis enzyme, without affecting the expressions of AAT1 and AAT2. While H2S donor could reverse the CSE knockdown-induced increase in the endogenous SO2 level and AAT activity. Moreover, H2S donor directly inhibited the activity of purified AAT protein, which was reversed by a thiol reductant DTT. Mechanistically, H2S donor sulfhydrated the purified AAT1/2 protein and rescued the decrease in the sulfhydration of AAT1/2 protein in the CSE knockdown endothelial cells. Furthermore, an AAT inhibitor l-aspartate-ß-hydroxamate (HDX), which blocked the upregulation of endogenous SO2/AAT generation induced by CSE knockdown, aggravated CSE knockdown-activated nuclear factor-κB pathway in the endothelial cells and its downstream inflammatory factors including ICAM-1, TNF-α, and IL-6. In in vivo experiment, H2S donor restored the deficiency of endogenous H2S production induced by MCT, and reversed the upregulation of endogenous SO2/AAT pathway via sulfhydrating AAT1 and AAT2. In accordance with the results of the in vitro experiment, HDX exacerbated the pulmonary vascular inflammation induced by the broken endogenous H2S production in MCT-treated rat. In conclusion, for the first time, the present study showed that H2S inhibited endogenous SO2 generation by inactivating AAT via the sulfhydration of AAT1/2; and the increased endogenous SO2 generation might play a compensatory role when H2S/CSE pathway was downregulated, thereby exerting protective effects in endothelial inflammatory responses in vitro and in vivo.


Asunto(s)
Células Endoteliales/metabolismo , Sulfuro de Hidrógeno/metabolismo , Inflamación/metabolismo , Dióxido de Azufre/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Regulación hacia Abajo , Humanos , Ratas , Transducción de Señal/fisiología , Porcinos
15.
CNS Neurosci Ther ; 23(6): 462-474, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28374506

RESUMEN

AIMS: Although cognitive dysfunction is a common neurological complication in elderly patients with diabetes, the mechanisms underlying this relationship remain unclear, and effective preventive interventions have yet to be developed. Thus, this study investigated the preventive effects and mechanisms of action associated with granulocyte colony-stimulating factor (G-CSF) on cognitive dysfunction in elderly diabetic mice with cerebral small vessel disease. METHODS: This study included 40 male db/db diabetic and wild-type (WT) mice that were categorized into the following four groups at the age of 3 weeks: db/db group (DG), db/db+G-CSF group (DGG), WT group (WG), and WT+G-CSF group (WGG). The mice were fed normal diets for 4 months and then given G-CSF (75 µg/kg) via intraperitoneal injections for 1 month. At 7.5 months of age, the cognitive abilities of the mice were assessed with the Y-maze test and the Social Choice Test; body weight, blood pressure (BP), and blood glucose measurements were obtained throughout the study. Brain imaging and blood oxygen level-dependent (BOLD) contrast imaging analyses were performed with a small animal magnetic resonance imaging (MRI) system, autophagosome levels were detected with a transmission electron microscope (TEM), hippocampal neurons were assessed with hematoxylin and eosin (HE) staining, and protein expressions and distributions were evaluated using immunohistochemistry and Western blot analyses. RESULTS: (i) The body weight and blood glucose levels of the DG and DGG mice were significantly higher than those of the WG and WGG mice; (ii) social choice and spatial memory capabilities were significantly reduced in DG mice but were recovered by G-CSF in DGG mice; (iii) the MRI scans revealed multiple lacunar lesions and apparent hippocampal atrophy in the brains of DG mice, but G-CSF reduced the number of lacunar lesions and ameliorated hippocampal atrophy; (iv) the MRI-BOLD scans showed a downward trend in whole-brain activity and reductions in the connectivities of the hippocampus and amygdala with subcortical structures in DG mice, but G-CSF clearly improved the altered brain activity as well as the connectivity of the hippocampus in DGG mice; (v) HE staining revealed fewer neurons in the hippocampus in DG mice; (vi) TEM analyses revealed significantly fewer autophagosomes in the hippocampi of DG mice, but G-CSF did not increase these numbers; (vii) there were significant reductions in mechanistic target of rapamycin (mTOR) and LC3-phosphatidylethanolamine conjugate (LC3)-II/I levels in the hippocampi of DG mice, whereas p62 was upregulated, and G-CSF significantly enhanced the levels of Beclin1, mTOR, and LC-II/I in DGG mice; and (viii) G-CSF significantly reversed increases in nuclear factor κB (NF-κB) protein levels in DG but not in WG mice. CONCLUSIONS: In this study, aged diabetic mice were prone to cognitive dysfunction and cerebral small vessel disease. However, administration of G-CSF significantly improved cognitive function in elderly db/db diabetic mice, and this change was likely related to the regulation of autophagy and NF-κB signaling pathways.


Asunto(s)
Envejecimiento , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/prevención & control , Diabetes Mellitus Experimental/complicaciones , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Animales , Glucemia/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Enfermedades de los Pequeños Vasos Cerebrales/sangre , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Conducta de Elección , Trastornos del Conocimiento/sangre , Trastornos del Conocimiento/diagnóstico por imagen , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/diagnóstico por imagen , Diabetes Mellitus Experimental/genética , Factor Estimulante de Colonias de Granulocitos/farmacología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Oxígeno/sangre , Ratas , Conducta Social , Serina-Treonina Quinasas TOR/metabolismo
16.
Cell Signal ; 27(1): 47-60, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25463242

RESUMEN

Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury.


Asunto(s)
Encéfalo/irrigación sanguínea , Ciclo Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ácidos Grasos no Esterificados/farmacología , Glucosa/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ciclinas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/ultraestructura , Humanos , Microscopía Confocal , Transporte de Proteínas/efectos de los fármacos , Proteínas Tirosina Fosfatasas , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
17.
PLoS One ; 10(4): e0120707, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25849550

RESUMEN

Granulocyte-colony stimulating factor (G-CSF) has been shown to play a neuroprotective role in ischemic stroke by mobilizing bone marrow (BM)-derived endothelial progenitor cells (EPCs), promoting angiogenesis, and inhibiting apoptosis. Impairments in mobilization and function of the BM-derived EPCs have previously been reported in animal and human studies of diabetes where there is both reduction in the levels of the BM-derived EPCs and its ability to promote angiogenesis. This is hypothesized to account for the pathogenesis of diabetic vascular complications such as stroke. Here, we sought to investigate the effects of G-CSF on diabetes-associated cerebral vascular defect. We observed that pretreatment of the cultured human brain vascular endothelial cells (HBVECs) with G-CSF largely prevented cell death induced by the combination stimulus with high glucose, free fatty acids (FFA) and hypoxia by increasing cell viability, decreasing apoptosis and caspase-3 activity. Cell ultrastructure measured by transmission electron microscope (TEM) revealed that G-CSF treatment nicely reduced combination stimulus-induced cell apoptosis. The results from fluorescent probe Fluo-3/AM showed that G-CSF greatly suppressed the levels of intracellular calcium ions under combination stimulus. We also found that G-CSF enhanced the expression of cell cycle proteins such as human cell division cycle protein 14A (hCdc14A), cyclinB and cyclinE, inhibited p53 activity, and facilitated cell cycle progression following combination stimulus. In addition, activation of extracellular signal-regulated kinase1/2 (ERK1/2) and Akt, and deactivation of c-Jun N terminal kinase (JNK) and p38 were proved to be required for the pro-survival effects of G-CSF on HBVECs exposed to combination stimulus. Overall, G-CSF is capable of alleviating HBVECs injury triggered by the combination administration with high glucose, FFA and hypoxia involving the mitogen-activated protein kinases (MAPK) and Akt signaling cascades. G-CSF may represent a promising therapeutic agent for diabetic stroke.


Asunto(s)
Apoptosis/efectos de los fármacos , Lesiones Encefálicas/prevención & control , Endotelio Vascular/efectos de los fármacos , Ácidos Grasos no Esterificados/efectos adversos , Glucosa/efectos adversos , Factor Estimulante de Colonias de Granulocitos/farmacología , Hipoxia/fisiopatología , Sustancias Protectoras/farmacología , Western Blotting , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Ensayo de Inmunoadsorción Enzimática , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos
18.
CNS Neurosci Ther ; 19(4): 252-61, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23521913

RESUMEN

AIMS: The damage of human brain vascular endothelial cells (HBVECs) is the key pathogenesis of diabetes-associated cerebral vascular complications. The aim of this study was to elucidate the effects of glutathione (GSH) on free fatty acids (FFAs)-induced HBVECs apoptosis, oxidative stress, and the involved possible signaling pathway. METHODS: After culturing HBVECs for 72 h with GSH and FFAs, we determined cell proliferation by CCK8, detected apoptosis by caspase-3 and Annexin V-FITC/PI staining, and judged oxygen stress by determining the reactive oxygen species (ROS) and the mitochondrial membrane potential (MMP). We investigated whether the Akt pathway was involved in FFAs-induced signaling pathway alteration and whether GSH influenced the above effects. RESULTS: After being cultured in 200 µM FFAs for 72 h, the HBVECs proliferation significantly decreased; HBVECs apoptosis increased; the ROS levels increased; and the HBVECs MMP subsequently decreased. FFAs induced a significant decrease in phosphorylated active Akt. These alterations were obviously prevented when 1 mM GSH was added to culture medium containing FFAs, and the above effects of GSH were blocked by Akt inhibitor. CONCLUSION: GSH may prevent FFAs-induced HBVECs damage, oxidative stress, and apoptosis through activating the Akt pathway.


Asunto(s)
Apoptosis/fisiología , Células Endoteliales/fisiología , Ácidos Grasos no Esterificados/toxicidad , Glutatión/fisiología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal/fisiología , Encéfalo/citología , Encéfalo/metabolismo , Supervivencia Celular/fisiología , Células Cultivadas , Células Endoteliales/metabolismo , Ácidos Grasos no Esterificados/antagonistas & inhibidores , Humanos , Estrés Oxidativo/fisiología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores
19.
Chin Med J (Engl) ; 126(1): 72-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23286481

RESUMEN

BACKGROUND: Asthma is a complex disease involving genetic and environment interactions. Atopy is a strong risk factor for asthma. The airway epithelium not only forms a physical barrier but also provides immune defense against harmful materials. To explore the effects of airway epithelium on asthma, we hypothesized that environmental injuries could act on bronchial epithelial cells and damage the physical barrier, which might facilitate allergens to stimulate immunoreactions and play an important role in the pathogenesis of asthma. METHODS: Thirty eight-week-old male Wistar rats were randomly divided into five groups with six rats in each group: control group, asthma group, ovalbumin (OVA) + OVA group, lipopolysaccharide (LPS) group and LPS + OVA group. In the control group, 0.9% saline was injected intraperitoneally on day 1. Fourteen days later, the rats were exposed to aerosolized 0.9% saline. In the asthma group, the rats were sensitized with an injection of 10 mg of OVA, followed by an aerosolized 2% OVA challenge 14 days later. The OVA + OVA group was sensitized by an inhalation 2% OVA, 20 minutes a day, from day 1 to day 7, and then OVA challenged in the same way as the asthma group. In the LPS group, LPS (200 µl, 1 µg/µl) was given by airway on day 1 and day 3, with a simultaneous aerosol inhalation of 2% OVA for 20 minutes a day from day 1 to day 7. Fourteen days later, the rats were challenged with saline as in the control group. While in the LPS + OVA group, LPS (200 µl, 1 µg/µl) was given by airway on day 1 and day 3, with a simultaneous aerosol inhalation of 2% OVA for 20 minutes a day from day 1 to day 7. Fourteen days later, the rats were challenged with OVA as in the asthma group. The expression of interleukin (IL)-4, interferon-gamma (IFN-γ) and thymic stromal lymphopoietin (TSLP) in the lungs was detected by reverse transcription polymerase chain reaction (RT-PCR) and the pulmonary pathological changes were also observed. The level of IL-4, IFN-γ and IgE in plasma was detected by enzyme-linked immunosorbent assay (ELISA). Bronchoalveolar lavage fluid (BALF) was collected to conduct differential cell counts. Flow cytometry analysis was also used to count Th1 and Th2 cells. RESULTS: The pathological changes in the LPS + OVA group were similar to the asthma group, while in other groups, the pathological changes were not obvious. The ratio of lymphocytes in BALF, IL-4/IFN-γ in plasma and the expression of the TSLP and IL-4 in the asthma and LPS + OVA groups were higher than in the control group and the OVA + OVA group (P < 0.05). The level of IgE was higher in the asthma, LPS and LPS + OVA groups than in the control group and the OVA + OVA group (P < 0.05). By flow cytometry analysis, the Th1/Th2 ratio was lower in the LPS + OVA and asthma groups than in other groups (P < 0.05). CONCLUSIONS: The experiment results show that the injury to the bronchial epithelial layer may be the initial event of allergic responses. This finding implies that a rational approach to therapeutics would be to increase the resistance of the airways to environmental injuries rather than concentrating on suppressing inflammation.


Asunto(s)
Bronquios/patología , Células Epiteliales/patología , Hipersensibilidad/etiología , Animales , Recuento de Células , Citocinas/fisiología , Modelos Animales de Enfermedad , Inmunoglobulina E/sangre , Interferón gamma/sangre , Interleucina-4/sangre , Lipopolisacáridos/toxicidad , Masculino , Ovalbúmina/inmunología , Ratas , Ratas Wistar , Linfopoyetina del Estroma Tímico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA