Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Neurochem Res ; 47(7): 2016-2031, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35386048

RESUMEN

Chronic hyperammonemia alters membrane expression of AMPA and NMDA receptors subunits in hippocampus leading to impaired memory and learning. Increasing extracellular cGMP normalizes these alterations. However, it has not been studied whether hyperammonemia alters the function of AMPA and NMDA receptors. The aims of this work were: (1) assess if hyperammonemia alters AMPA and NMDA receptors function; (2) analyze if extracellular cGMP reverses these alterations. A multielectrode array device was used to stimulate Schäffer collaterals and record postsynaptic currents in the CA1 region in hippocampal slices from control and hyperammonemic rats and analyze different features of the excitatory postsynaptic potentials. Hyperammonemia reduces the amplitude and delays appearance of AMPA EPSPs, whereas increases amplitude, hyperpolarization, depolarization and desensitization area of the NMDA EPSPs. These alterations in AMPA and NMDA function are accentuated as the stimulation intensity increases. Adding extracellular cGMP reverses the alteration in amplitude in both, AMPA and NMDA EPSPs. In control slices extracellular cGMP decreases the AMPA and NMDA EPSPs amplitude and delays the response of neurons and the return to the resting potential at all stimulation intensities. In conclusion, hyperammonemia decreases the AMPA response, whereas increases the NMDA response and extracellular cGMP reverses these alterations.


Asunto(s)
Hiperamonemia , Receptores de N-Metil-D-Aspartato , Animales , GMP Cíclico/metabolismo , Hipocampo/metabolismo , Hiperamonemia/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Ratas , Ratas Wistar , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
2.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35806435

RESUMEN

Long-chain polyunsaturated fatty acids (LCPUFA), essential molecules whose precursors must be dietary supplied, are highly represented in the brain contributing to numerous neuronal processes. Recent findings have demonstrated that LCPUFA are represented in lipid raft microstructures, where they favor molecular interactions of signaling complexes underlying neuronal functionality. During aging, the brain lipid composition changes affecting the lipid rafts' integrity and protein signaling, which may induce memory detriment. We investigated the effect of a n-3 LCPUFA-enriched diet on the cognitive function of 6- and 15-months-old female mice. Likewise, we explored the impact of dietary n-3 LCPUFAs on hippocampal lipid rafts, and their potential correlation with aging-induced neuroinflammation. Our results demonstrate that n-3 LCPUFA supplementation improves spatial and recognition memory and restores the expression of glutamate and estrogen receptors in the hippocampal lipid rafts of aged mice to similar profiles than young ones. Additionally, the n-3 LCPUFA-enriched diet stabilized the lipid composition of the old mice's hippocampal lipid rafts to the levels of young ones and reduced the aged-induced neuroinflammatory markers. Hence, we propose that n-3 LCPUFA supplementation leads to beneficial cognitive performance by "rejuvenating" the lipid raft microenvironment that stabilizes the integrity and interactions of memory protein players embedded in these microdomains.


Asunto(s)
Ácidos Grasos Omega-3 , Ácidos Grasos Insaturados , Envejecimiento/metabolismo , Animales , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Insaturados/metabolismo , Femenino , Hipocampo/metabolismo , Microdominios de Membrana/metabolismo , Ratones , Enfermedades Neuroinflamatorias
3.
J Hepatol ; 73(3): 582-592, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30654069

RESUMEN

BACKGROUND & AIMS: Chronic hyperammonemia induces neuroinflammation which mediates cognitive impairment. How hyperammonemia induces neuroinflammation remains unclear. We aimed to assess whether: chronic hyperammonemia induces peripheral inflammation, and whether this then contributes to neuroinflammation, altered neurotransmission and impaired spatial learning - before assessing whether this neuroinflammation and impairment is reversible following hyperammonemia elimination or treatment of peripheral inflammation with anti-TNF-α. METHODS: Chronic hyperammonemia was induced by feeding rats an ammonia-containing diet. Peripheral inflammation was analyzed by measuring PGE2, TNF-α, IL-6 and IL-10. We tested whether chronic anti-TNF-α treatment improves peripheral inflammation, neuroinflammation, membrane expression of glutamate receptors in the hippocampus and spatial learning. RESULTS: Hyperammonemic rats show a rapid and reversible induction of peripheral inflammation, with increased pro-inflammatory PGE2, TNF-α and IL-6, followed at around 10 days by reduced anti-inflammatory IL-10. Peripheral anti-TNF-α treatment prevents peripheral inflammation induction and the increase in IL-1b and TNF-α and microglia activation in hippocampus of the rats, which remain hyperammonemic. This is associated with prevention of the altered membrane expression of glutamate receptors and of the impairment of spatial memory assessed in the radial and Morris water mazes. CONCLUSIONS: This report unveils a new mechanism by which chronic hyperammonemia induces neurological alterations: induction of peripheral inflammation. This suggests that reducing peripheral inflammation by safe procedures would improve cognitive function in patients with minimal hepatic encephalopathy. LAY SUMMARY: This article unveils a new mechanism by which chronic hyperammonemia induces cognitive impairment in rats: chronic hyperammonemia per se induces peripheral inflammation, which mediates many of its effects on the brain, including induction of neuroinflammation, which alters neurotransmission, leading to cognitive impairment. It is also shown that reducing peripheral inflammation by treating rats with anti-TNF-α, which does not cross the blood-brain barrier, prevents hyperammonemia-induced neuroinflammation, alterations in neurotransmission and cognitive impairment.


Asunto(s)
Antiinflamatorios/administración & dosificación , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Hiperamonemia/complicaciones , Infliximab/administración & dosificación , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Disfunción Cognitiva/sangre , Modelos Animales de Enfermedad , Encefalopatía Hepática/tratamiento farmacológico , Encefalopatía Hepática/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Masculino , Memoria/efectos de los fármacos , Ratas , Ratas Wistar , Aprendizaje Espacial/efectos de los fármacos , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/sangre
4.
FASEB J ; 33(9): 9913-9928, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31162953

RESUMEN

Activated microglia and increased brain IL-1ß play a main role in cognitive impairment in much pathology. We studied the role of IL-1ß in neuroinflammation-induced impairment of the following different types of learning and memory: novel object recognition (NOR), novel object location (NOL), spatial learning, reference memory (RM), and working memory (WM). All these processes are impaired in hyperammonemic rats. We assessed which of these types of learning and memory are restored by blocking the IL-1 receptor in vivo in hyperammonemic rats and the possible mechanisms involved. Blocking the IL-1 receptor reversed microglial activation in the hippocampus, perirhinal cortex, and prefrontal cortex but not in the postrhinal cortex. This was associated with the restoration of NOR and WM but not of tasks involving a spatial component (NOL and RM). This suggests that IL-1ß would be involved in neuroinflammation-induced nonspatial memory impairment, whereas spatial memory impairment would be IL-1ß-independent and would be mediated by other proinflammatory factors.-Taoro-González, L., Cabrera-Pastor, A., Sancho-Alonso, M., Arenas, Y. M., Meseguer-Estornell, F., Balzano, T., ElMlili, N., Felipo, V. Differential role of interleukin-1ß in neuroinflammation-induced impairment of spatial and nonspatial memory in hyperammonemic rats.


Asunto(s)
Hiperamonemia/inducido químicamente , Inflamación/inducido químicamente , Interleucina-1beta/metabolismo , Memoria/efectos de los fármacos , Amoníaco/administración & dosificación , Amoníaco/toxicidad , Alimentación Animal , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Masculino , Microglía/efectos de los fármacos , Microglía/fisiología , Subunidades de Proteína , Ratas , Ratas Wistar , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Int J Mol Sci ; 20(15)2019 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-31382686

RESUMEN

Lipids in the brain are major components playing structural functions as well as physiological roles in nerve cells, such as neural communication, neurogenesis, synaptic transmission, signal transduction, membrane compartmentalization, and regulation of gene expression. Determination of brain lipid composition may provide not only essential information about normal brain functioning, but also about changes with aging and diseases. Indeed, deregulations of specific lipid classes and lipid homeostasis have been demonstrated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, recent studies have shown that membrane microdomains, named lipid rafts, may change their composition in correlation with neuronal impairment. Lipid rafts are key factors for signaling processes for cellular responses. Lipid alteration in these signaling platforms may correlate with abnormal protein distribution and aggregation, toxic cell signaling, and other neuropathological events related with these diseases. This review highlights the manner lipid changes in lipid rafts may participate in the modulation of neuropathological events related to AD and PD. Understanding and characterizing these changes may contribute to the development of novel and specific diagnostic and prognostic biomarkers in routinely clinical practice.


Asunto(s)
Envejecimiento/metabolismo , Lípidos/genética , Microdominios de Membrana/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Microdominios de Membrana/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Transducción de Señal/genética
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 286-295, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29107806

RESUMEN

Hyperammonemia contributes to altered neurotransmission and cognition in patients with hepatic encephalopathy. Hyperammonemia in rats affects differently high- and low-affinity AMPA receptors (AMPARs) in cerebellum. We hypothesized that hyperammonemia would alter differently membrane expression of AMPARs GluA1 and GluA2 subunits by altering its phosphorylation. This work aims were: 1) assess if hyperammonemia alters GluA1 and GluA2 subunits membrane expression in cerebellum and 2) analyze the underlying mechanisms. Hyperammonemia reduces membrane expression of GluA2 and enhances membrane expression of GluA1 in vivo. We show that changes in GluA2 and GluA1 membrane expression in hyperammonemia would be due to enhanced NMDA receptors activation which reduces cGMP levels and phosphodiesterase 2 (PDE2) activity, resulting in increased cAMP levels. This leads to increased protein kinase A (PKA) activity which activates phospholipase C (PLC) and protein kinase C (PKC) thus increasing phosphorylation of GluA2 in Ser880, which reduces GluA2 membrane expression, and phosphorylation of GluA1 in Ser831, which increases GluA1 membrane expression. Blocking NMDA receptors or inhibiting PKA, PLC or PKC normalizes GluA2 and GluA1 phosphorylation and membrane expression in hyperammonemic rats. Altered GluA2 and GluA1 membrane expression would alter signal transduction which may contribute to cognitive and motor alterations in hyperammonemia and hepatic encephalopathy.


Asunto(s)
Membrana Celular/metabolismo , Hiperamonemia/genética , Receptores AMPA/genética , Animales , Membrana Celular/patología , Enfermedad Crónica , Encefalopatía Hepática/genética , Encefalopatía Hepática/metabolismo , Encefalopatía Hepática/patología , Hiperamonemia/metabolismo , Hiperamonemia/patología , Masculino , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptores AMPA/metabolismo , Transducción de Señal/genética , Transmisión Sináptica/genética
7.
J Neuroinflammation ; 15(1): 36, 2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422059

RESUMEN

BACKGROUND: Hyperammonemic rats reproduce the cognitive alterations of patients with hepatic encephalopathy, including altered spatial memory, attributed to altered membrane expression of AMPA receptor subunits in hippocampus. Neuroinflammation mediates these cognitive alterations. We hypothesized that hyperammonemia-induced increase in IL-1ß in hippocampus would be responsible for the altered GluA1 and GluA2 membrane expression. The aims of this work were to (1) assess if increased IL-1ß levels and activation of its receptor are responsible for the changes in GluA1 and/or GluA2 membrane expression in hyperammonemia and (2) identify the mechanisms by which activation of IL-1 receptor leads to altered membrane expression of GluA1 and GluA2. METHODS: We analyzed in hippocampal slices from control and hyperammonemic rat membrane expression of AMPA receptors using the BS3 cross-linker and phosphorylation of the GluA1 and GluA2 subunits using phosphor-specific antibodies. The IL-1 receptor was blocked with IL-Ra, and the signal transduction pathways involved in modulation of membrane expression of GluA1 and GluA2 were analyzed using inhibitors of key steps. RESULTS: Hyperammonemia reduces GluA1 and increases GluA2 membrane expression and reduces phosphorylation of GluA1 at Ser831 and of GluA2 at Ser880. Hyperammonemia increases IL-1ß, enhancing activation of IL-1 receptor. This leads to activation of Src. The changes in membrane expression of GluA1 and GluA2 are reversed by blocking the IL-1 receptor with IL-1Ra or by inhibiting Src with PP2. After Src activation, the pathways for GluA2 and GluA1 diverge. Src increases phosphorylation of GluN2B at Tyr14721 and membrane expression of GluN2B in hyperammonemic rats, leading to activation of MAP kinase p38, which binds to and reduces phosphorylation at Thr560 and activity of PKCζ, resulting in reduced phosphorylation at Ser880 and enhanced membrane expression of GluA2. Increased Src activity in hyperammonemic rats also activates PKCδ which enhances phosphorylation of GluN2B at Ser1303, reducing membrane expression of CaMKII and phosphorylation at Ser831 and membrane expression of GluA1. CONCLUSIONS: This work identifies two pathways by which neuroinflammation alters glutamatergic neurotransmission in hippocampus. The steps of the pathways identified could be targets to normalize neurotransmission in hyperammonemia and other pathologies associated with increased IL-1ß by acting, for example, on p38 or PKCδ. IL-1ß alters membrane expression of GluA1 and GluA2 AMPA receptor subunits by two difrerent mechanisms in the hippocampus of hyperammonemic rats.


Asunto(s)
Membrana Celular/metabolismo , Hipocampo/metabolismo , Hiperamonemia/metabolismo , Receptores AMPA/biosíntesis , Receptores Tipo I de Interleucina-1/metabolismo , Acetatos/toxicidad , Animales , Membrana Celular/efectos de los fármacos , Expresión Génica , Hipocampo/efectos de los fármacos , Hiperamonemia/inducido químicamente , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Masculino , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Ratas , Ratas Wistar , Receptores AMPA/genética , Receptores Tipo I de Interleucina-1/antagonistas & inhibidores
8.
J Neurochem ; 137(4): 539-48, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26875688

RESUMEN

The glutamate-nitric oxide (NO)-cGMP pathway modulates some forms of learning. How glycine modulates this pathway is unclear. Glycine could modulate the pathway biphasically, enhancing its function through NMDA receptor activation or reducing it through glycine receptor activation. Chronic hyperammonemia impairs the glutamate-NO-cGMP pathway in the cerebellum and induces cognitive impairment. The possible alterations in hyperammonemia of glycinergic neurotransmission and of glutamate-NO-cGMP pathway modulation by glycine remain unknown. The aims were to assess, by in vivo microdialysis in cerebellum: (i) the effects of different glycine concentrations, administered through the microdialysis probe, on the glutamate-NO-cGMP pathway function; (ii) the effects of tonic glycine receptors activation on the pathway function, by blocking them with strychnine; (iii) whether hyperammonemia alters the pathway modulation by glycine; (iv) and whether hyperammonemia alters extracellular glycine concentration and/or glycine receptor membrane expression. In control rats, low glycine levels reduce the pathway function, likely by activating glycine receptors, while 20 µM glycine enhances the pathway function, likely by enhancing NMDA receptor activation. In hyperammonemic rats, glycine did not reduce the pathway function, but enhanced it when administered at 1-20 µM. Hyperammonemia reduces extracellular glycine concentration by approximately 50% and glycine receptor membrane expression. However, tonic glycine receptor activation seems to be enhanced in hyperammonemic rats, as indicated by the larger increase in extracellular cGMP induced by strychnine. These data show that glycine modulates the glutamate-NO-cGMP pathway biphasically and that hyperammonemia strongly alters glycinergic neurotransmission and modulation by glycine of the glutamate-NO-cGMP pathway. These alterations may contribute to the cerebellar aspects of cognitive alterations in hyperammonemia. The findings reported in this study show that hyperammonemia alters glycinergic neurotransmission and the glutamate-NO-cGMP pathway modulation by glycine. In control rats, low glycine levels reduced the pathway function, likely by activating glycine receptors, while 20 µM glycine enhanced the pathway, likely by enhancing NMDA receptor activation. In hyperammonemic rats, glycine (administered at 1-20 µM) enhances the pathway, likely by activating NMDA receptors.


Asunto(s)
Cerebelo/metabolismo , GMP Cíclico/metabolismo , Ácido Glutámico/metabolismo , Glicina/metabolismo , Hiperamonemia/metabolismo , Óxido Nítrico/metabolismo , Animales , Cerebelo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Glicina/farmacología , Masculino , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
9.
J Neuroinflammation ; 13: 41, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26883214

RESUMEN

BACKGROUND: Patients with liver cirrhosis and minimal hepatic encephalopathy (MHE) show mild cognitive impairment and spatial learning dysfunction. Hyperammonemia acts synergistically with inflammation to induce cognitive impairment in MHE. Hyperammonemia-induced neuroinflammation in hippocampus could contribute to spatial learning impairment in MHE. Two main aims of this work were: (1) to assess whether chronic hyperammonemia increases inflammatory factors in the hippocampus and if this is associated with microglia and/or astrocytes activation and (2) to assess whether hyperammonemia-induced neuroinflammation in the hippocampus is associated with altered membrane expression of glutamate and GABA receptors and spatial learning impairment. There are no specific treatments for cognitive alterations in patients with MHE. A third aim was to assess whether treatment with sulforaphane enhances endogenous the anti-inflammatory system, reduces neuroinflammation in the hippocampus of hyperammonemic rats, and restores spatial learning and if normalization of receptor membrane expression is associated with learning improvement. METHODS: We analyzed the following in control and hyperammonemic rats, treated or not with sulforaphane: (1) microglia and astrocytes activation by immunohistochemistry, (2) markers of pro-inflammatory (M1) (IL-1ß, IL-6) and anti-inflammatory (M2) microglia (Arg1, YM-1) by Western blot, (3) membrane expression of GABA, AMPA, and NMDA receptors using the BS3 cross-linker, and (4) spatial learning using the radial maze. RESULTS: The results reported show that hyperammonemia induces astrocytes and microglia activation in the hippocampus, increasing pro-inflammatory cytokines IL-1ß and IL-6. This is associated with altered membrane expression of AMPA, NMDA, and GABA receptors which would be responsible for altered neurotransmission and impairment of spatial learning in the radial maze. Treatment with sulforaphane promotes microglia differentiation from pro-inflammatory M1 to anti-inflammatory M2 phenotype and reduces activation of astrocytes in hyperammonemic rats. This reduces neuroinflammation, normalizes membrane expression of glutamate and GABA receptors, and restores spatial learning in hyperammonemic rats. CONCLUSIONS: Hyperammonemia-induced neuroinflammation impairs glutamatergic and GABAergic neurotransmission by altering membrane expression of glutamate and GABA receptors, resulting in impaired spatial learning. Sulforaphane reverses all these effects. Treatment with sulforaphane could be useful to improve cognitive function in cirrhotic patients with minimal or clinical hepatic encephalopathy.


Asunto(s)
Antiinflamatorios/uso terapéutico , Encefalitis/etiología , Hipocampo/metabolismo , Hiperamonemia/complicaciones , Isotiocianatos/uso terapéutico , Discapacidades para el Aprendizaje , Receptores de Neurotransmisores/metabolismo , Animales , Antiinflamatorios/farmacología , Peso Corporal/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/patología , Hiperamonemia/patología , Técnicas In Vitro , Isotiocianatos/farmacología , Discapacidades para el Aprendizaje/tratamiento farmacológico , Discapacidades para el Aprendizaje/etiología , Discapacidades para el Aprendizaje/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Ratas , Ratas Wistar , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología , Sulfóxidos
10.
J Neuroinflammation ; 13(1): 245, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27623772

RESUMEN

BACKGROUND: Peripheral inflammation contributes to the neurological alterations in hepatic encephalopathy (HE). Neuroinflammation and altered GABAergic neurotransmission mediate cognitive and motor alterations in rats with HE. It remains unclear (a) if neuroinflammation and neurological impairment in HE are a consequence of peripheral inflammation and (b) how neuroinflammation impairs GABAergic neurotransmission. The aims were to assess in rats with HE whether reducing peripheral inflammation with anti-TNF-α (1) prevents cognitive impairment and motor in-coordination, (2) normalizes neuroinflammation and extracellular GABA in the cerebellum and also (3) advances the understanding of mechanisms linking neuroinflammation and increased extracellular GABA. METHODS: Rats with HE due to portacaval shunt (PCS) were treated with infliximab. Astrocytes and microglia activation and TNF-α and IL-1ß were analyzed by immunohistochemistry. Membrane expression of the GABA transporters GAT-3 and GAT-1 was analyzed by cross-linking with BS3. Extracellular GABA was analyzed by microdialysis. Motor coordination was tested using the beam walking and learning ability using the Y maze task. RESULTS: PCS rats show peripheral inflammation, activated astrocytes, and microglia and increased levels of TNF-α and IL-1ß. Membrane expression of GAT-3 and extracellular GABA are increased, leading to impaired motor coordination and learning ability. Infliximab reduces peripheral inflammation, microglia, and astrocyte activation and neuroinflammation and normalizes GABAergic neurotransmission, motor coordination, and learning ability. CONCLUSIONS: Neuroinflammation is associated with altered GABAergic neurotransmission and increased GAT-3 membrane expression and extracellular GABA (a); peripheral inflammation is a main contributor to the impairment of motor coordination and of the ability to learn the Y maze task in PCS rats (b); and reducing peripheral inflammation using safe procedures could be a new therapeutic approach to improve cognitive and motor function in patients with HE


Asunto(s)
Cerebelo/metabolismo , Encefalopatía Hepática/patología , Inflamación/tratamiento farmacológico , Infliximab/uso terapéutico , Discapacidades para el Aprendizaje/tratamiento farmacológico , Trastornos Psicomotores/tratamiento farmacológico , Ácido gamma-Aminobutírico/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , GMP Cíclico/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Encefalopatía Hepática/complicaciones , Inflamación/etiología , Infliximab/farmacología , Discapacidades para el Aprendizaje/etiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos Psicomotores/etiología , Ratas , Ratas Wistar
11.
J Neuroinflammation ; 13(1): 83, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27090509

RESUMEN

BACKGROUND: Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: (a) Enhancing endogenous anti-inflammatory mechanisms by sulforaphane treatment reduces neuroinflammation and restores learning and motor coordination. (b) Reduction of neuroinflammation by sulforaphane normalizes extracellular GABA and glutamate-NO-cGMP pathway and identify underlying mechanisms. (c) Identify steps by which hyperammonemia-induced microglial activation impairs cognitive and motor function and how sulforaphane restores them. METHODS: We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. RESULTS: Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane expression, extracellular GABA, glutamate-nitric oxide-cGMP pathway, and learning and motor coordination. CONCLUSIONS: Neuroinflammation increases GABAergic tone in the cerebellum by increasing GAT-3 membrane expression. This impairs motor coordination and learning in the Y maze. Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/biosíntesis , Encefalopatía Hepática/metabolismo , Hiperamonemia/metabolismo , Microglía/metabolismo , Animales , Antiinflamatorios/farmacología , Western Blotting , Membrana Celular/metabolismo , Cerebelo , Modelos Animales de Enfermedad , Encefalopatía Hepática/complicaciones , Hiperamonemia/etiología , Hiperamonemia/fisiopatología , Inmunohistoquímica , Inflamación/metabolismo , Isotiocianatos/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Microdiálisis , Microglía/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Wistar , Sulfóxidos , Ácido gamma-Aminobutírico/metabolismo
12.
Brain Behav Immun ; 57: 360-370, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27189036

RESUMEN

Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1ß, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors.


Asunto(s)
Disfunción Cognitiva/metabolismo , GMP Cíclico/farmacología , Hipocampo/metabolismo , Hiperamonemia/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Memoria a Corto Plazo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Memoria Espacial , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , GMP Cíclico/administración & dosificación , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hiperamonemia/complicaciones , Hiperamonemia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/etiología , Interleucina-1beta/efectos de los fármacos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Ratas , Ratas Wistar , Receptores AMPA/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Factor de Necrosis Tumoral alfa/efectos de los fármacos
13.
J Neuroinflammation ; 12: 195, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26511444

RESUMEN

BACKGROUND: There are no specific treatments for the neurological alterations of cirrhotic patients with minimal hepatic encephalopathy (MHE). Rats with MHE due to portacaval shunt (PCS) show impaired spatial learning. The underlying mechanisms remain unknown. The aims of this work were to assess: (a) whether PCS rats show neuroinflammation in hippocampus, (b) whether treatment with sildenafil reduces neuroinflammation and restores spatial learning in PCS rats, and (c) analyze the underlying mechanisms. METHODS: Neuroinflammation was assessed by determining inflammatory markers by Western blot. Phosphorylation of MAP-kinase p38 was assessed by immunohistochemistry. Membrane expression of GABA and glutamate receptors was analyzed using BS3 cross-linker. Spatial learning was analyzed using the radial and Morris water mazes. To assess if sildenafil reverses the alterations, rats were treated with sildenafil in the drinking water. RESULTS: PCS rats show increased IL-1ß and TNF-α levels and phosphorylation (activity) of p38 in hippocampus. Membrane expression of subunits α1 of GABAA receptor and GluR2 of AMPA receptor are increased in PCS rats, while subunits GluR1 of AMPA receptors and NR1 and NR2a of NMDA receptors are reduced. PCS rats show reduced spatial learning in the radial and Morris water mazes. Sildenafil treatment normalizes IL-1ß and TNF-α levels, p38 phosphorylation, and membrane expression of GABAA, AMPA, and NMDA receptors and restores spatial learning. CONCLUSIONS: Increased IL-1ß alters GABAergic and glutamatergic neurotransmission in hippocampus and impairs spatial learning in rats with MHE. Sildenafil reduces neuroinflammation and restores learning. Phosphodiesterase-5 inhibitors may be useful to improve cognitive function in patients with MHE.


Asunto(s)
Encefalopatía Hepática/tratamiento farmacológico , Encefalopatía Hepática/psicología , Inflamación/tratamiento farmacológico , Aprendizaje por Laberinto/efectos de los fármacos , Citrato de Sildenafil/uso terapéutico , Vasodilatadores/uso terapéutico , Animales , Encefalopatía Hepática/patología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación/patología , Interleucina-1beta/metabolismo , Activación de Macrófagos/efectos de los fármacos , Masculino , Microglía/efectos de los fármacos , Derivación Portocava Quirúrgica , Ratas , Ratas Wistar , Receptores de GABA/biosíntesis , Receptores de Glutamato/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Vitam Horm ; 118: 247-288, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35180929

RESUMEN

Cyclic Guanosine-Monophosphate (cGMP) is implicated as second messenger in a plethora of pathways and its effects are executed mainly by cGMP-dependent protein kinases (PKG). It is involved in both peripheral (cardiovascular regulation, intestinal secretion, phototransduction, etc.) and brain (hippocampal synaptic plasticity, neuroinflammation, cognitive function, etc.) processes. Stimulation of hippocampal cGMP signaling have been proved to be beneficial in animal models of aging, Alzheimer's disease or hepatic encephalopathy, restoring different cognitive functions such as passive avoidance, object recognition or spatial memory. However, even when some inhibitors of cGMP-degrading enzymes (PDEs) are already used against peripheral pathologies, their utility as neurological treatments is still under clinical investigation. Additionally, it has been demonstrated a list of cGMP roles as not second but first messenger. The role of extracellular cGMP has been specially studied in hippocampal function and cognitive impairment in animal models and it has emerged as an important modulator of neuroinflammation-mediated cognitive alterations and hippocampal synaptic plasticity malfunction. Specifically, it has been demonstrated that extracellular cGMP decreases hippocampal IL-1ß levels restoring membrane expression of glutamate receptors in the hippocampus and cognitive function in hyperammonemic rats. The mechanisms implicated are still unclear and might involve complex interactions between hippocampal neurons, astrocytes and microglia. Membrane targets for extracellular cGMP are still poorly understood and must be addressed in future studies.


Asunto(s)
GMP Cíclico , Hiperamonemia , Animales , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Hipocampo/metabolismo , Hiperamonemia/metabolismo , Microglía/metabolismo , Ratas , Transducción de Señal/fisiología
15.
Mol Neurobiol ; 56(6): 4428-4439, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30328550

RESUMEN

Chronic hyperammonemia impairs spatial memory by altering membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus. Intracerebral administration of extracellular cGMP to hyperammonemic rats restores spatial memory and membrane expression of AMPA receptors. The underlying molecular mechanisms remain unknown and cannot be analyzed in vivo. The aims of the present work were to (1) assess whether extracellular cGMP reverses the alterations in membrane expression of GluA1 and GluA2 in hippocampus of hyperammonemic rats ex vivo and (2) identify the underlying mechanisms. To reach these aims, we used freshly isolated hippocampal slices from control and hyperammonemic rats and treated them ex vivo with extracellular cGMP. Extracellular cGMP normalizes membrane expression of GluA2 restoring its phosphorylation in Ser880 because it restores PKCζ activation by Thr560 auto-phosphorylation, which is a consequence of normalization by extracellular cGMP of phosphorylation and activity of p38 which was increased in hyperammonemic rats. Normalization of p38 is a consequence of normalization of membrane expression of the GluN2B subunit of NMDA receptor, mediated by a reduction in its phosphorylation in Tyr1472 due to reduction of Src activation, which was over-activated in hyperammonemic rats. Extracellular cGMP also restores membrane expression of GluA1 increasing its phosphorylation at Ser831 because it restores CaMKII membrane association and phosphorylation in Thr286. All these effects of extracellular cGMP are due to a reduction of hippocampal IL-1ß levels in hyperammonemic rats, which reduces IL-1 receptor-mediated Src over-activation. Reduction in IL-1ß levels is due to the reduction of microglia activation in hippocampus of hyperammonemic rats.


Asunto(s)
Membrana Celular/metabolismo , GMP Cíclico/farmacología , Espacio Extracelular/química , Hipocampo/metabolismo , Hiperamonemia/metabolismo , Receptores AMPA/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Membrana Celular/efectos de los fármacos , Interleucina-1beta/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Modelos Biológicos , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Subunidades de Proteína/metabolismo , Ratas Wistar , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/metabolismo
16.
Neuropharmacology ; 161: 107496, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30641078

RESUMEN

Trafficking of glutamate, glutamine and GABA between astrocytes and neurons is essential to maintain proper neurotransmission. Chronic hyperammonemia alters neurotransmission and cognitive function. The aims of this work were to analyze in cerebellum of rats the effects of chronic hyperammonemia on: a) extracellular glutamate, glutamine and GABA concentrations; b) membrane expression of glutamate, glutamine and GABA transporters; c) how they are modulated by extracellular cGMP. Hyperammonemic rats show increased levels of extracellular glutamate, glutamine, GABA and citrulline in cerebellum in vivo. Hyperammonemic rats show: a) increased membrane expression of the astrocytic glutamine transporter SNAT3 and reduced membrane expression of the neuronal transporter SNAT1; b) reduced membrane expression of the neuronal GABA transporter GAT1 and increased membrane expression of the astrocytic GAT3 transporter; c) reduced membrane expression of the astrocytic glutamate transporters GLAST and GLT-1 and of the neuronal transporter EAAC1. Increasing extracellular cGMP normalizes membrane expression of SNAT3, GAT3, GAT1 and GLAST and extracellular glutamate, glutamine, GABA and citrulline hyperammonemic rats. Extracellular cGMP also modulates membrane expression of most transporters in control rats, reducing membrane expression of SNAT1, GLT-1 and EAAC1 and increasing that of GAT1 and GAT3. Modulation of SNAT3, SNAT1, GLT-1 and EAAC1 by extracellular cGMP would be mediated by inhibition of glycine receptors. These data suggest that, in pathological situations such as hyperammonemia, hepatic encephalopathy or Alzheimer's disease, reduced levels of extracellular cGMP contribute to alterations in membrane expression of glutamine, glutamate and GABA transporters, in the extracellular levels of glutamine, glutamate and GABA and in neurotransmission. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Asunto(s)
Membrana Celular/metabolismo , Cerebelo/metabolismo , GMP Cíclico/farmacología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Hiperamonemia/metabolismo , Proteínas de Transporte de Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Citrulina/metabolismo , Espacio Extracelular , Masculino , Proteínas de Transporte de Neurotransmisores/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
17.
Acta Physiol (Oxf) ; 226(2): e13270, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30830722

RESUMEN

Several million patients with liver cirrhosis suffer minimal hepatic encephalopathy (MHE), with mild cognitive and coordination impairments that reduce their quality of life and life span. Hyperammonaemia and peripheral inflammation act synergistically to induce these neurological alterations. We propose that MHE appearance is because of the changes in peripheral immune system, which are transmitted to brain, leading to neuroinflammation that alters neurotransmission leading to cognitive and motor alterations. We summarize studies showing that MHE in cirrhotic patients is associated with alterations in the immune system and that patients died with HE show neuroinflammation in cerebellum, with microglial and astrocytic activation and Purkinje cell loss. We also summarize studies in animal models of MHE on the role of peripheral inflammation in neuroinflammation induction, how neuroinflammation alters neurotransmission and how this leads to cognitive and motor alterations. These studies identify therapeutic targets and treatments that improve cognitive and motor function. Rats with MHE show neuroinflammation in hippocampus and altered NMDA and AMPA receptor membrane expression, which impairs spatial learning and memory. Neuroinflammation in cerebellum is associated with altered GABA transporters and extracellular GABA, which impair motor coordination and learning in a Y maze. These alterations are reversed by treatments that reduce peripheral inflammation (anti-TNFα, ibuprofen), neuroinflammation (sulphoraphane, p38 inhibitors), GABAergic tone (bicuculline, pregnenolone sulphate) or increase extracellular cGMP (sildenafil or cGMP). The mechanisms identified would also occur in other chronic diseases associated with inflammation, aging and some mental and neurodegenerative diseases. Treatments that improve MHE may also be beneficial to treat these pathologies.


Asunto(s)
Cognición/fisiología , Encefalopatía Hepática/metabolismo , Inflamación/metabolismo , Actividad Motora/fisiología , Transmisión Sináptica/fisiología , Animales , Encefalopatía Hepática/fisiopatología , Humanos , Hiperamonemia/metabolismo
18.
Sci Rep ; 7(1): 17656, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29247190

RESUMEN

There is increasing evidence that extracellular cGMP modulates glutamatergic neurotransmission and some forms of learning. However, the underlying mechanisms remain unknown. We proposed the hypotheses that extracellular cGMP may regulate membrane expression of AMPA receptors. To do this extracellular cGMP should act on a membrane protein and activate signal transduction pathways modulating phosphorylation of the GluA1 and/or GluA2 subunits. It has been shown that extracellular cGMP modulates glycine receptors. The aims of this work were to assess: 1) whether extracellular cGMP modulates membrane expression of GluA1 and GluA2 subunits of AMPA receptors in cerebellum in vivo; 2) whether this is mediated by glycine receptors; 3) the role of GluA1 and GluA2 phosphorylation and 4) identify steps of the intracellular pathways involved. We show that extracellular cGMP modulates membrane expression of GluA1 and GluA2 in cerebellum in vivo and unveil the mechanisms involved. Extracellular cGMP reduced glycine receptor activation, modulating cAMP, protein kinases and phosphatases, and GluA1 and GluA2 phosphorylation, resulting in increased GluA1 and reduced GluA2 membrane expression. Extracellular cGMP therefore modulates membrane expression of AMPA receptors and glutamatergic neurotransmission. The steps identified may be therapeutic targets to improve neurotransmission and neurological function in pathological situations with abnormal glutamatergic neurotransmission.


Asunto(s)
Cerebelo/metabolismo , Proteínas de la Membrana/metabolismo , Subunidades de Proteína/metabolismo , Células de Purkinje/fisiología , Receptores AMPA/metabolismo , Animales , Cerebelo/patología , GMP Cíclico/metabolismo , Espacio Extracelular/metabolismo , Regulación de la Expresión Génica , Masculino , Proteínas de la Membrana/genética , Fosforilación , Subunidades de Proteína/genética , Ratas , Ratas Wistar , Receptores AMPA/genética , Receptores de Glicina/metabolismo , Transducción de Señal , Transmisión Sináptica
19.
CNS Neurosci Ther ; 23(5): 386-394, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28296282

RESUMEN

AIMS: Patients with liver disease may develop hepatic encephalopathy (HE), with cognitive impairment and motor in-coordination. Rats with HE due to portacaval shunts (PCS) show motor in-coordination. We hypothesized that in PCS rats: (i) Motor in-coordination would be due to enhanced GABAergic tone in cerebellum; (ii) increased GABAergic tone would be due to neuroinflammation; (iii) increasing cGMP would reduce neuroinflammation and GABAergic tone and restore motor coordination. To assess these hypotheses, we assessed if (i) treatment with sildenafil reduces neuroinflammation; (ii) reduced neuroinflammation is associated with reduced GABAergic tone and restored motor coordination. METHODS: Rats were treated with sildenafil to increase cGMP. Microglia and astrocytes activation were analyzed by immunohistochemistry, extracellular GABA by microdialysis, and motor coordination in the beam walking. RESULTS: PCS rats show neuroinflammation in cerebellum, with microglia and astrocytes activation, increased IL-1b and TNF-a and reduced YM-1 and IL-4. Membrane expression of the GABA transporter GAT1 is reduced, while GAT3 is increased. Extracellular GABA and motor in-coordination are increased. Sildenafil treatment eliminates neuroinflammation, microglia and astrocytes activation; changes in membrane expression of GABA transporters; and restores motor coordination. CONCLUSIONS: This study supports an interplay between cGMP-neuroinflammation and GABAergic neurotransmission in impairing motor coordination in PCS rats.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Cerebelo/efectos de los fármacos , Encefalopatía Hepática/tratamiento farmacológico , Destreza Motora/efectos de los fármacos , Citrato de Sildenafil/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Astrocitos/fisiología , Cerebelo/inmunología , Cerebelo/patología , Modelos Animales de Enfermedad , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Encefalopatía Hepática/patología , Encefalopatía Hepática/fisiopatología , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/patología , Microglía/fisiología , Destreza Motora/fisiología , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/fisiología , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo , Ácido gamma-Aminobutírico/metabolismo
20.
Sci Rep ; 6: 33124, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27634333

RESUMEN

It has been proposed that extracellular cGMP modulates the ability to learn a Y maze task, but the underlying mechanisms remained unknown. Here we show that extracellular cGMP, at physiological concentrations, modulates learning in the Y maze in a biphasic way by modulating the glutamate-nitric oxide-cGMP pathway in cerebellum. Extracellular cGMP reduces glycine receptors activation inducing a voltage-dependent calcium-channels-mediated increase of calcium in Purkinje neurons. This calcium increase modulates CaMKII phosphorylation in a biphasic way. When basal calcium concentration is low extracellular cGMP reduces CaMKII phosphorylation, increasing nitric oxide synthase activity, the glutamate-NO-cGMP pathway function and learning ability. When basal calcium is normal extracellular cGMP increases CaMKII phosphorylation, reducing nitric oxide synthase activity, the pathway function and learning. These data unveil new mechanisms modulating learning in the Y maze and likely other learning types which may be therapeutic targets to improve learning in pathological situations associated with altered cGMP levels.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , GMP Cíclico/metabolismo , Ácido Glutámico/metabolismo , Óxido Nítrico/metabolismo , Receptores de Glicina/metabolismo , Animales , Calcio/metabolismo , Cerebelo/metabolismo , Aprendizaje/fisiología , Masculino , Óxido Nítrico Sintasa/metabolismo , Fosforilación/fisiología , Ratas , Ratas Wistar , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA