Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(21): 11409-11420, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32404420

RESUMEN

Formation of G-quadruplex (G4) DNA structures in key regulatory regions in the genome has emerged as a secondary structure-based epigenetic mechanism for regulating multiple biological processes including transcription, replication, and telomere maintenance. G4 formation (folding), stabilization, and unfolding must be regulated to coordinate G4-mediated biological functions; however, how cells regulate the spatiotemporal formation of G4 structures in the genome is largely unknown. Here, we demonstrate that endogenous oxidized guanine bases in G4 sequences and the subsequent activation of the base excision repair (BER) pathway drive the spatiotemporal formation of G4 structures in the genome. Genome-wide mapping of occurrence of Apurinic/apyrimidinic (AP) site damage, binding of BER proteins, and G4 structures revealed that oxidized base-derived AP site damage and binding of OGG1 and APE1 are predominant in G4 sequences. Loss of APE1 abrogated G4 structure formation in cells, which suggests an essential role of APE1 in regulating the formation of G4 structures in the genome. Binding of APE1 to G4 sequences promotes G4 folding, and acetylation of APE1, which enhances its residence time, stabilizes G4 structures in cells. APE1 subsequently facilitates transcription factor loading to the promoter, providing mechanistic insight into the role of APE1 in G4-mediated gene expression. Our study unravels a role of endogenous oxidized DNA bases and APE1 in controlling the formation of higher-order DNA secondary structures to regulate transcription beyond its well-established role in safeguarding the genomic integrity.


Asunto(s)
Daño del ADN , Reparación del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , G-Cuádruplex , Células A549 , Acetilación , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Expresión Génica , Genes myc , Genoma Humano , Guanina/química , Guanina/metabolismo , Células HCT116 , Humanos , Oxidación-Reducción , Estrés Oxidativo/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Methods Mol Biol ; 2701: 243-252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574487

RESUMEN

The base excision repair (BER) is the primary damage repair pathway for repairing most of the endogenous DNA damage including oxidative base lesions, apurinic/apyrimidinic (AP) sites, and single-strand breaks (SSBs) in the genome. Repair of these damages in cells relies on sequential recruitment and coordinated actions of multiple DNA repair enzymes, which include DNA glycosylases (such as OGG1), AP-endonucleases (APE1), DNA polymerases, and DNA ligases. APE1 plays a key role in the BER pathway by repairing the AP sites and SSBs in the genome. Several methods have been developed to generate a map of endogenous AP sites or SSBs in the genome and the binding of DNA repair proteins. In this chapter, we describe detailed approaches to map genome-wide occupancy or enrichment of APE1 in human cells using chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq). Further, we discuss standard bioinformatics approaches for analyzing ChIP-seq data to identify APE1 enrichment or binding peaks in the genome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA