Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genes Dev ; 30(19): 2173-2186, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27737961

RESUMEN

Chromosomal instability is a hallmark of cancer, but mitotic regulators are rarely mutated in tumors. Mutations in the condensin complexes, which restructure chromosomes to facilitate segregation during mitosis, are significantly enriched in cancer genomes, but experimental evidence implicating condensin dysfunction in tumorigenesis is lacking. We report that mice inheriting missense mutations in a condensin II subunit (Caph2nes) develop T-cell lymphoma. Before tumors develop, we found that the same Caph2 mutation impairs ploidy maintenance to a different extent in different hematopoietic cell types, with ploidy most severely perturbed at the CD4+CD8+ T-cell stage from which tumors initiate. Premalignant CD4+CD8+ T cells show persistent catenations during chromosome segregation, triggering DNA damage in diploid daughter cells and elevated ploidy. Genome sequencing revealed that Caph2 single-mutant tumors are near diploid but carry deletions spanning tumor suppressor genes, whereas P53 inactivation allowed Caph2 mutant cells with whole-chromosome gains and structural rearrangements to form highly aggressive disease. Together, our data challenge the view that mitotic chromosome formation is an invariant process during development and provide evidence that defective mitotic chromosome structure can promote tumorigenesis.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica/genética , Linfoma de Células T/genética , Complejos Multiproteicos/genética , Mutación Missense/genética , Neoplasias del Timo/genética , Adenosina Trifosfatasas/metabolismo , Anafase , Animales , Células Cultivadas , Estructuras Cromosómicas/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Linfoma de Células T/fisiopatología , Masculino , Metafase , Ratones , Complejos Multiproteicos/metabolismo , Timocitos/patología , Neoplasias del Timo/fisiopatología
3.
J Hepatol ; 61(5): 1126-34, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24946279

RESUMEN

BACKGROUND & AIMS: Acid sphingomyelinase (ASMase) is activated in non-alcoholic steatohepatitis (NASH). However, the contribution of ASMase to NASH is poorly understood and limited to hepatic steatosis and glucose metabolism. Here we examined the role of ASMase in high fat diet (HFD)-induced NASH. METHODS: Autophagy, endoplasmic reticulum (ER) stress and lysosomal membrane permeabilization (LMP) were determined in ASMase(-/-) mice fed a HFD. The impact of pharmacological ASMase inhibition on NASH was analyzed in wild type mice fed a HFD. RESULTS: ASMase deficiency determined resistance to hepatic steatosis mediated by a HFD or methionine-choline deficient diet. ASMase(-/-) mice were resistant to HFD-induced hepatic ER stress, but sensitive to tunicamycin-mediated ER stress, indicating selectivity in the resistance of ASMase(-/-) mice to ER stress and steatosis. Autophagic flux, determined in the presence of rapamycin and/or chloroquine, was lower in primary mouse hepatocytes (PMH) from ASMase(-/-) mice and accompanied by increased p62 levels, suggesting autophagic impairment. Moreover, autophagy suppression by chloroquine and brefeldin A caused ER stress in PMH from ASMase(+/+) mice but not in ASMase(-/-) mice. ASMase(-/-) PMH exhibited increased lysosomal cholesterol loading, decreased LMP and apoptosis resistance induced by O-methyl-serine dodecylamide hydrochloride or palmitic acid, effects that were reversed by decreasing cholesterol levels by oxysterol 25-hydroxycholesterol. In vivo pharmacological ASMase inhibition by amitriptyline, a widely used tricyclic antidepressant, protected wild type mice against HFD-induced hepatic steatosis, fibrosis, and liver damage, effects indicative of early-stage NASH. CONCLUSIONS: These findings underscore a critical role for ASMase in diet-induced NASH and suggest the potential of amitriptyline as a treatment for patients with NASH.


Asunto(s)
Autofagia/fisiología , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/metabolismo , Amitriptilina/farmacología , Animales , Ceramidas/metabolismo , Colesterol/metabolismo , Deficiencia de Colina/complicaciones , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Humanos , Hígado/metabolismo , Hígado/patología , Lisosomas/metabolismo , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Permeabilidad , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielinas/metabolismo
4.
J Biol Chem ; 287(2): 1178-88, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22102288

RESUMEN

Niemann-Pick disease (NPD) is a lysosomal storage disease caused by the loss of acid sphingomyelinase (ASMase) that features neurodegeneration and liver disease. Because ASMase-knock-out mice models NPD and our previous findings revealed that ASMase activates cathepsins B/D (CtsB/D), our aim was to investigate the expression and processing of CtsB/D in hepatic stellate cells (HSCs) from ASMase-null mice and their role in liver fibrosis. Surprisingly, HSCs from ASMase-knock-out mice exhibit increased basal level and activity of CtsB as well as its in vitro processing in culture, paralleling the enhanced expression of fibrogenic markers α-smooth muscle actin (α-SMA), TGF-ß, and pro-collagen-α1(I) (Col1A1). Moreover, pharmacological inhibition of CtsB blunted the expression of α-SMA and Col1A1 and proliferation of HSCs from ASMase-knock-out mice. Consistent with the enhanced activation of CtsB in HSCs from ASMase-null mice, the in vivo liver fibrosis induced by chronic treatment with CCl(4) increased in ASMase-null compared with wild-type mice, an effect that was reduced upon CtsB inhibition. In addition to liver, the enhanced proteolytic processing of CtsB was also observed in brain and lung of ASMase-knock-out mice, suggesting that the overexpression of CtsB may underlie the phenotype of NPD. Thus, these findings reveal a functional relationship between ASMase and CtsB and that the ablation of ASMase leads to the enhanced processing and activation of CtsB. Therefore, targeting CtsB may be of relevance in the treatment of liver fibrosis in patients with NPD.


Asunto(s)
Catepsina B/metabolismo , Cirrosis Hepática/enzimología , Enfermedades de Niemann-Pick/enzimología , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Biomarcadores/metabolismo , Tetracloruro de Carbono/toxicidad , Intoxicación por Tetracloruro de Carbono/genética , Intoxicación por Tetracloruro de Carbono/metabolismo , Intoxicación por Tetracloruro de Carbono/patología , Intoxicación por Tetracloruro de Carbono/terapia , Catepsina B/genética , Catepsina D/genética , Catepsina D/metabolismo , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/terapia , Ratones , Ratones Noqueados , Enfermedades de Niemann-Pick/inducido químicamente , Enfermedades de Niemann-Pick/genética , Enfermedades de Niemann-Pick/patología , Enfermedades de Niemann-Pick/terapia , Esfingomielina Fosfodiesterasa/genética
5.
J Hepatol ; 59(4): 805-13, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23707365

RESUMEN

BACKGROUND & AIMS: The pathogenesis of alcohol-induced liver disease (ALD) is poorly understood. Here, we examined the role of acid sphingomyelinase (ASMase) in alcohol induced hepatic endoplasmic reticulum (ER) stress, a key mechanism of ALD. METHODS: We examined ER stress, lipogenesis, hyperhomocysteinemia, mitochondrial cholesterol (mChol) trafficking and susceptibility to LPS and concanavalin-A in ASMase(-)(/-) mice fed alcohol. RESULTS: Alcohol feeding increased SREBP-1c, DGAT-2, and FAS mRNA in ASMase(+/+) but not in ASMase(-/-) mice. Compared to ASMase(+/+) mice, ASMase(-/-) mice exhibited decreased expression of ER stress markers induced by alcohol, but the level of tunicamycin-mediated upregulation of ER stress markers and steatosis was similar in both types of mice. The increase in homocysteine levels induced by alcohol feeding was comparable in both ASMase(+/+) and ASMase(-/-) mice. Exogenous ASMase, but not neutral SMase, induced ER stress by perturbing ER Ca(2+) homeostasis. Moreover, alcohol-induced mChol loading and StARD1 overexpression were blunted in ASMase(-/-) mice. Tunicamycin upregulated StARD1 expression and this outcome was abrogated by tauroursodeoxycholic acid. Alcohol-induced liver injury and sensitization to LPS and concanavalin-A were prevented in ASMase(-/-) mice. These effects were reproduced in alcohol-fed TNFR1/R2(-/-) mice. Moreover, ASMase does not impair hepatic regeneration following partial hepatectomy. Of relevance, liver samples from patients with alcoholic hepatitis exhibited increased expression of ASMase, StARD1, and ER stress markers. CONCLUSIONS: Our data indicate that ASMase is critical for alcohol-induced ER stress, and provide a rationale for further clinical investigation in ALD.


Asunto(s)
Colesterol/metabolismo , Estrés del Retículo Endoplásmico , Hepatopatías Alcohólicas/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Amitriptilina/farmacología , Animales , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hepatitis Alcohólica/etiología , Hepatitis Alcohólica/metabolismo , Hepatitis Alcohólica/patología , Humanos , Hiperhomocisteinemia/complicaciones , Hepatopatías Alcohólicas/etiología , Hepatopatías Alcohólicas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielina Fosfodiesterasa/genética
6.
Hepatology ; 54(1): 319-27, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21523796

RESUMEN

UNLABELLED: Tumor necrosis factor (TNF) has been implicated in the progression of many chronic liver diseases leading to fibrosis; however, the role of TNF in fibrogenesis is controversial and the specific contribution of TNF receptors to hepatic stellate cell (HSC) activation remains to be established. Using HSCs from wild-type, TNF-receptor-1 (TNFR1) knockout, TNF-receptor-2 (TNFR2) knockout, or TNFR1/R2 double-knockout (TNFR-DKO) mice, we show that loss of both TNF receptors reduced procollagen-α1(I) expression, slowed down HSC proliferation, and impaired platelet-derived growth factor (PDGF)-induced promitogenic signaling in HSCs. TNFR-DKO HSCs exhibited decreased AKT phosphorylation and in vitro proliferation in response to PDGF. These effects were reproduced in TNFR1 knockout, but not TNFR2 knockout, HSCs. In addition, matrix metalloproteinase 9 (MMP-9) expression was dependent on TNF binding to TNFR1 in primary mouse HSCs. These results were validated in the human HSC cell line, LX2, using neutralizing antibodies against TNFR1 and TNFR2. Moreover, in vivo liver damage and fibrogenesis after bile-duct ligation were reduced in TNFR-DKO and TNFR1 knockout mice, compared to wild-type or TNFR2 knockout mice. CONCLUSION: TNF regulates HSC biology through its binding to TNFR1, which is required for HSC proliferation and MMP-9 expression. These data indicate a regulatory role for TNF in extracellular matrix remodeling and liver fibrosis, suggesting that targeting TNFR1 may be of benefit to attenuate liver fibrogenesis.


Asunto(s)
Proliferación Celular , Matriz Extracelular/fisiología , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Conductos Biliares/fisiopatología , Línea Celular , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/fisiología , Humanos , Ligadura , Cirrosis Hepática/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología
7.
Cell Death Differ ; 29(6): 1267-1282, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34916628

RESUMEN

Cytoplasmic recognition of microbial lipopolysaccharides (LPS) in human cells is elicited by the caspase-4 and caspase-5 noncanonical inflammasomes, which induce a form of inflammatory cell death termed pyroptosis. Here we show that LPS-mediated activation of caspase-4 also induces a stress response promoting cellular senescence, which is dependent on the caspase-4 substrate gasdermin-D and the tumor suppressor p53. Furthermore, we found that the caspase-4 noncanonical inflammasome is induced and assembled in response to oncogenic RAS signaling during oncogene-induced senescence (OIS). Moreover, targeting caspase-4 expression in OIS showed its critical role in the senescence-associated secretory phenotype and the cell cycle arrest induced in cellular senescence. Finally, we observed that caspase-4 induction occurs in vivo in mouse models of tumor suppression and ageing. Altogether, we are showing that cellular senescence is induced by cytoplasmic LPS recognition by the noncanonical inflammasome and that this pathway is conserved in the cellular response to oncogenic stress.


Asunto(s)
Caspasas Iniciadoras , Inflamasomas , Animales , Caspasas Iniciadoras/inmunología , Senescencia Celular/inmunología , Citoplasma/inmunología , Humanos , Inmunidad Innata , Inflamasomas/inmunología , Lipopolisacáridos/farmacología , Ratones
8.
Am J Pathol ; 177(3): 1214-24, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20651240

RESUMEN

The mechanisms linking hepatocellular death, hepatic stellate cell (HSC) activation, and liver fibrosis are largely unknown. Here, we investigate whether acidic sphingomyelinase (ASMase), a known regulator of death receptor and stress-induced hepatocyte apoptosis, plays a role in liver fibrogenesis. We show that selective stimulation of ASMase (up to sixfold), but not neutral sphingomyelinase, occurs during the transdifferentiation/activation of primary mouse HSCs into myofibroblast-like cells, coinciding with cathepsin B (CtsB) and D (CtsD) processing. ASMase inhibition or genetic down-regulation by small interfering RNA blunted CtsB/D processing, preventing the activation and proliferation of mouse and human HSCs (LX2 cells). In accordance, HSCs from heterozygous ASMase mice exhibited decreased CtsB/D processing, as well as lower levels of alpha-smooth muscle actin expression and proliferation. Moreover, pharmacological CtsB inhibition reproduced the antagonism of ASMase in preventing the fibrogenic properties of HSCs, without affecting ASMase activity. Interestingly, liver fibrosis induced by bile duct ligation or carbon tetrachloride administration was reduced in heterozygous ASMase mice compared with that in wild-type animals, regardless of their sensitivity to liver injury in either model. To provide further evidence for the ASMase-CtsB pathway in hepatic fibrosis, liver samples from patients with nonalcoholic steatohepatitis were studied. CtsB and ASMase mRNA levels increased eight- and threefold, respectively, in patients compared with healthy controls. These findings illustrate a novel role of ASMase in HSC biology and liver fibrogenesis by regulating its downstream effectors CtsB/D.


Asunto(s)
Diferenciación Celular/fisiología , Hígado Graso/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Western Blotting , Catepsina B/metabolismo , Catepsina D/metabolismo , Línea Celular , Proliferación Celular , Hígado Graso/patología , Fibrosis/metabolismo , Fibrosis/patología , Células Estrelladas Hepáticas/patología , Humanos , Inmunohistoquímica , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/patología , Hígado/patología , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Hepatology ; 49(4): 1297-307, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19116891

RESUMEN

UNLABELLED: Cathepsins have been best characterized in tumorigenesis and cell death and implicated in liver fibrosis; however, whether cathepsins directly regulate hepatic stellate cell (HSC) activation and proliferation, hence modulating their fibrogenic potential, is largely unknown. Here, we show that expression of cathepsin B (CtsB) and cathepsin D (CtsD) is negligible in quiescent HSCs but parallels the increase of alpha-smooth muscle actin and transforming growth factor-beta during in vitro mouse HSC activation. Both cathepsins are necessary for HSC transdifferentiation into myofibroblasts, because their silencing or inhibition decreased HSC proliferation and the expression of phenotypic markers of HSC activation, with similar results observed with the human HSC cell line LX2. CtsB inhibition blunted AKT phosphorylation in activated HSCs in response to platelet-derived growth factor. Moreover, during in vivo liver fibrogenesis caused by CCl(4) administration, CtsB expression increased in HSCs but not in hepatocytes, and its inactivation mitigated CCl(4)-induced inflammation, HSC activation, and collagen deposition. CONCLUSION: These findings support a critical role for cathepsins in HSC activation, suggesting that the antagonism of cathepsins in HSCs may be of relevance for the treatment of liver fibrosis.


Asunto(s)
Catepsina B/fisiología , Catepsina D/fisiología , Transdiferenciación Celular , Células Estrelladas Hepáticas/fisiología , Cirrosis Hepática/fisiopatología , Actinas/metabolismo , Animales , Tetracloruro de Carbono , Línea Celular , Proliferación Celular , Regulación hacia Abajo , Expresión Génica , Silenciador del Gen , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
10.
Methods Mol Biol ; 1896: 57-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30474840

RESUMEN

Inflammasomes are multimeric protein complexes that process IL-1ß by cleaving the translated full-length protein into its active IL-1ß mature fragment. In oncogene-induced senescence, inflammasomes play a crucial role by regulating IL1R signaling and consequently modulating proliferation and the senescence-associated secretory phenotype (SASP). Inflammasome activation requires two steps: (a) priming of the inflammasome by activation of IL1B expression, followed by (b) cleavage and release of mature IL-1ß. In this chapter, we describe methods to detect both stages of inflammasome activation in cellular senescence.


Asunto(s)
Caspasa 1/metabolismo , Senescencia Celular , Fibroblastos/metabolismo , Inflamasomas/análisis , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Oncogenes , Células Cultivadas , Fibroblastos/patología , Humanos , Transducción de Señal
11.
Aging Cell ; 18(4): e12981, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31148378

RESUMEN

Cellular senescence is triggered by diverse stimuli and is characterized by long-term growth arrest and secretion of cytokines and chemokines (termed the SASP-senescence-associated secretory phenotype). Senescence can be organismally beneficial as it can prevent the propagation of damaged or mutated clones and stimulate their clearance by immune cells. However, it has recently become clear that senescence also contributes to the pathophysiology of aging through the accumulation of damaged cells within tissues. Here, we describe that inhibition of the reaction catalysed by LSG1, a GTPase involved in the biogenesis of the 60S ribosomal subunit, leads to a robust induction of cellular senescence. Perhaps surprisingly, this was not due to ribosome depletion or translational insufficiency, but rather through perturbation of endoplasmic reticulum homeostasis and a dramatic upregulation of the cholesterol biosynthesis pathway. The underlying transcriptomic signature is shared with several other forms of senescence, and the cholesterol biosynthesis genes contribute to the cell cycle arrest in oncogene-induced senescence. Furthermore, targeting of LSG1 resulted in amplification of the cholesterol/ER signature and restoration of a robust cellular senescence response in transformed cells, suggesting potential therapeutic uses of LSG1 inhibition.


Asunto(s)
Senescencia Celular/genética , Estrés del Retículo Endoplásmico/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Puntos de Control del Ciclo Celular/genética , Colesterol/biosíntesis , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Homeostasis/genética , Humanos , Biosíntesis de Proteínas/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Transcriptoma , Transfección , Proteína p53 Supresora de Tumor/metabolismo
12.
Cell Rep ; 27(4): 997-1007.e5, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018144

RESUMEN

Oncogene-induced senescence (OIS) is a tumor suppressive response to oncogene activation that can be transmitted to neighboring cells through secreted factors of the senescence-associated secretory phenotype (SASP). Currently, primary and secondary senescent cells are not considered functionally distinct endpoints. Using single-cell analysis, we observed two distinct transcriptional endpoints, a primary endpoint marked by Ras and a secondary endpoint marked by Notch activation. We find that secondary oncogene-induced senescence in vitro and in vivo requires Notch, rather than SASP alone, as previously thought. Moreover, Notch signaling weakens, but does not abolish, SASP in secondary senescence. Global transcriptomic differences, a blunted SASP response, and the induction of fibrillar collagens in secondary senescence point toward a functional diversification between secondary and primary senescence.


Asunto(s)
Senescencia Celular , Receptores Notch/fisiología , Animales , Células Cultivadas , Humanos , Ratones Endogámicos C57BL , Oncogenes/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Transcriptoma
13.
Sci Adv ; 5(6): eaaw0254, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31183403

RESUMEN

Cellular senescence is a stress response program characterized by a robust cell cycle arrest and the induction of a proinflammatory senescence-associated secretory phenotype (SASP) that is triggered through an unknown mechanism. Here, we show that, during oncogene-induced senescence (OIS), the Toll-like receptor 2 (TLR2) and its partner TLR10 are key mediators of senescence in vitro and in murine models. TLR2 promotes cell cycle arrest by regulating the tumor suppressors p53-p21CIP1, p16INK4a, and p15INK4b and regulates the SASP through the induction of the acute-phase serum amyloids A1 and A2 (A-SAAs) that, in turn, function as the damage-associated molecular patterns (DAMPs) signaling through TLR2 in OIS. Last, we found evidence that the cGAS-STING cytosolic DNA sensing pathway primes TLR2 and A-SAAs expression in OIS. In summary, we report that innate immune sensing of senescence-associated DAMPs by TLR2 controls the SASP and reinforces the cell cycle arrest program in OIS.


Asunto(s)
Senescencia Celular , Inmunidad Innata , Receptor Toll-Like 2/metabolismo , Alarminas/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Nucleotidiltransferasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Transducción de Señal , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Receptor Toll-Like 10/antagonistas & inhibidores , Receptor Toll-Like 10/genética , Receptor Toll-Like 10/metabolismo , Receptor Toll-Like 2/antagonistas & inhibidores , Receptor Toll-Like 2/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
14.
Nat Commun ; 9(1): 1020, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523787

RESUMEN

Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease. Here we report that senescent cholangiocytes induce profound alterations in the cellular and signalling microenvironment, with recruitment of myofibroblasts and macrophages causing collagen deposition, TGFß production and induction of senescence in surrounding cholangiocytes and hepatocytes. Finally, we study how inhibition of TGFß-signalling disrupts the transmission of senescence and restores liver function. We identify cellular senescence as a detrimental mechanism in the development of biliary injury. Our results identify TGFß as a potential therapeutic target to limit senescence-dependent aggravation in human cholangiopathies.


Asunto(s)
Conductos Biliares/lesiones , Conductos Biliares/patología , Senescencia Celular/fisiología , Colangitis Esclerosante/patología , Cirrosis Hepática Biliar/patología , Hígado/patología , Regeneración/fisiología , Animales , Células Cultivadas , Colangitis Esclerosante/terapia , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Hepatocitos/patología , Humanos , Queratina-19/genética , Cirrosis Hepática Biliar/terapia , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miofibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo
15.
Cell Death Dis ; 7(11): e2464, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27831566

RESUMEN

Sirtuin-1 (SIRT1) regulates hepatic metabolism but its contribution to NF-κB-dependent inflammation has been overlooked. Cysteine cathepsins (Cathepsin B or S, CTSB/S) execute specific functions in physiological processes, such as protein degradation, having SIRT1 as a substrate. We investigated the roles of CTSB/S and SIRT1 in the regulation of hepatic inflammation using primary parenchymal and non-parenchymal hepatic cell types and cell lines. In all cells analyzed, CTSB/S inhibition reduces nuclear p65-NF-κB and κB-dependent gene expression after LPS or TNF through enhanced SIRT1 expression. Accordingly, SIRT1 silencing was sufficient to enhance inflammatory gene expression. Importantly, in a dietary mouse model of non-alcoholic steatohepatitis, or in healthy and fibrotic mice after LPS challenge, cathepsins as well as NF-κB-dependent gene expression are activated. Consistent with the prominent role of cathepsin/SIRT1, cysteine cathepsin inhibition limits NF-κB-dependent hepatic inflammation through the regulation of SIRT1 in all in vivo settings, providing a novel anti-inflammatory therapeutic target in liver disease.


Asunto(s)
Catepsina B/metabolismo , Catepsinas/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Hígado/patología , FN-kappa B/metabolismo , Sirtuina 1/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inflamación/genética , Inflamación/patología , Lipopolisacáridos/farmacología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Fenotipo , Procesamiento Proteico-Postraduccional/efectos de los fármacos
16.
Cell Signal ; 25(5): 1318-27, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23453973

RESUMEN

Glycogen synthase (GS) is activated by glucose/glycogen depletion in skeletal muscle cells, but the contributing signaling pathways, including the chief GS regulator GSK3, have not been fully defined. The MEK/ERK pathway is known to regulate GSK3 and respond to glucose. The aim of this study was to elucidate the GSK3 and MEK/ERK pathway contribution to GS activation by glucose deprivation in cultured human myotubes. Moreover, we tested the glucose-dependence of GSK3 and MEK/ERK effects on GS and angiotensin (1-7) actions on these pathways. We show that glucose deprivation activated GS, but did not change phospho-GS (Ser640/1), GSK3ß activity or activity-activating phosphorylation of ERK1/2. We then treated glucose-replete and -depleted cells with SB415286, U0126, LY294 and rapamycin to inhibit GSK3, MEK1/2, PI3K and mTOR, respectively. SB415286 activated GS and decreased the relative phospho-GS (Ser640/1) level, more in glucose-depleted than -replete cells. U0126 activated GS and reduced the phospho-GS (Ser640/1) content significantly in glucose-depleted cells, while GSK3ß activity tended to increase. LY294 inactivated GS in glucose-depleted cells only, without affecting relative phospho-GS (Ser640/1) level. Rapamycin had no effect on GS activation. Angiotensin-(1-7) raised phospho-ERK1/2 but not phospho-GSK3ß (Ser9) content, while it inactivated GS and increased GS phosphorylation on Ser640/1, in glucose-replete cells. In glucose-depleted cells, angiotensin-(1-7) effects on ERK1/2 and GS were reverted, while relative phospho-GSK3ß (Ser9) content decreased. In conclusion, activation of GS by glucose deprivation is not due to GS Ser640/1 dephosphorylation, GSK3ß or ERK1/2 regulation in cultured myotubes. However, glucose depletion enhances GS activation/Ser640/1 dephosphorylation due to both GSK3 and MEK/ERK inhibition. Angiotensin-(1-7) inactivates GS in glucose-replete cells in association with ERK1/2 activation, not with GSK3 regulation, and glucose deprivation reverts both hormone effects. Thus, the ERK1/2 pathway negatively regulates GS activity in myotubes, without involving GSK3 regulation, and as a function of the presence of glucose.


Asunto(s)
Angiotensina I/farmacología , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Fibras Musculares Esqueléticas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Aminofenoles/farmacología , Butadienos/farmacología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Humanos , Maleimidas/farmacología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Nitrilos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA