Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(20): e202402874, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38512717

RESUMEN

The development of optoelectronically-active soft materials is drawing attention to the application of soft electronics. A room-temperature solvent-free liquid obtained by modifying a π-conjugated moiety with flexible yet bulky alkyl chains is a promising functional soft material. Tuning the elastic modulus (G') is essential for employing optoelectronically-active alkyl-π liquids in deformable devices. However, the range of G' achieved through the molecular design of alkyl-π liquids is limited. We report herein a method for controlling G' of alkyl-π liquids by gelation. Adding 1 wt % low-molecular-weight gelator formed the alkyl-π functional molecular gel (FMG) and increased G' of alkyl-π liquids by up to seven orders of magnitude while retaining the optical properties. Because alkyl-π FMGs have functional π-moieties in the gel medium, this new class of gels has a much higher content of π-moieties of up to 59 wt % compared to conventional π-gels of only a few wt %. More importantly, the gel state has a 23 % higher charge-retention capacity than the liquid, providing better performance in deformable mechanoelectric generator-electret devices. The strategy used in this study is a novel approach for developing next-generation optoelectronically-active FMG materials.

2.
Int J Nanomedicine ; 13: 2365-2376, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713167

RESUMEN

INTRODUCTION: The 3-dimensional scaffold plays a key role in volume and quality of repair tissue in periodontal tissue engineering therapy. We fabricated a novel 3D collagen scaffold containing carbon-based 2-dimensional layered material, named graphene oxide (GO). The aim of this study was to characterize and assess GO scaffold for periodontal tissue healing of class II furcation defects in dog. MATERIALS AND METHODS: GO scaffolds were prepared by coating the surface of a 3D collagen sponge scaffold with GO dispersion. Scaffolds were characterized using cytotoxicity and tissue reactivity tests. In addition, GO scaffold was implanted into dog class II furcation defects and periodontal healing was investigated at 4 weeks postsurgery. RESULTS: GO scaffold exhibited low cytotoxicity and enhanced cellular ingrowth behavior and rat bone forming ability. In addition, GO scaffold stimulated healing of dog class II furcation defects. Periodontal attachment formation, including alveolar bone, periodontal ligament-like tissue, and cementum-like tissue, was significantly increased by GO scaffold implantation, compared with untreated scaffold. CONCLUSION: The results suggest that GO scaffold is biocompatible and possesses excellent bone and periodontal tissue formation ability. Therefore, GO scaffold would be beneficial for periodontal tissue engineering therapy.


Asunto(s)
Regeneración Ósea/fisiología , Defectos de Furcación/terapia , Grafito , Andamios del Tejido , Cicatrización de Heridas/fisiología , Animales , Colágeno/química , Colágeno/metabolismo , Cemento Dental/fisiología , Perros , Femenino , Grafito/química , Grafito/farmacología , Masculino , Ligamento Periodontal/fisiología , Ligamento Periodontal/fisiopatología , Ratas Wistar , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA