Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 357, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822872

RESUMEN

Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture. KEY POINTS: • Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria. • Argirium-SUNCs are a possible plant protection product. • Argirium-SUNCs protect tomato plants against bacterial speck disease.


Asunto(s)
Nanopartículas del Metal , Enfermedades de las Plantas , Plata , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Plata/farmacología , Nanopartículas del Metal/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Cobre/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo
2.
Phytopathology ; 114(7): 1466-1479, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700944

RESUMEN

Xylella fastidiosa (Xf) is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, but several integrated strategies have been implemented for containing the spread of Xf. Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on chitosan and/or fosetyl-Al have shown different in vitro antibacterial efficacy against Xf subsp. fastidiosa (Xff) and pauca (Xfp). This work demonstrated the uptake of chitosan-coated fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of Olea europaea plants. Additionally, the antibacterial activity of fosetyl-Al, nano-fosetyl, nano-chitosan, and CH-nanoFos was tested on Nicotiana tabacum cultivar SR1 (Petite Havana) inoculated with Xff, Xfp, or Xf subsp. multiplex (Xfm). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able to reduce the colonization of Xff, Xfm, and Xfp in tobacco plants. Additionally, the area under the disease progress curve, used to assess symptom development in tobacco plants inoculated with Xff, Xfm, and Xfp and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.


Asunto(s)
Quitosano , Nanopartículas , Nicotiana , Enfermedades de las Plantas , Xylella , Xylella/fisiología , Xylella/efectos de los fármacos , Quitosano/farmacología , Quitosano/química , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Olea/microbiología
3.
Appl Microbiol Biotechnol ; 107(14): 4519-4531, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37289240

RESUMEN

The main measure worldwide adopted to manage plant bacterial diseases is based on the application of copper compounds, which are often partially efficacious for the frequent appearance of copper-resistant bacterial strains and have raised concerns for their toxicity to the environment and humans. Therefore, there is an increasing need to develop new environmentally friendly, efficient, and reliable strategies for controlling plant bacterial diseases, and among them, the use of nanoparticles seems promising. The present study aimed to evaluate the feasibility of protecting plants against attacks of gram-negative and gram-positive phytopathogenic bacteria by using electrochemically synthesized silver ultra nanoclusters (ARGIRIUM­SUNCs®) with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+). ARGIRIUM­SUNCs strongly inhibited the in vitro growth (effective concentration, EC50, less than 1 ppm) and biofilm formation of Pseudomonas syringae pv. tomato and of quarantine bacteria Xanthomonas vesicatoria, Xylella fastidiosa subsp. pauca, and Clavibacter michiganensis subsp. michiganensis. In addition, treatments with ARGIRIUM­SUNCs also provoked the eradication of biofilm for P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis. Treatment of tomato plants via root absorption with ARGIRIUM­SUNCs (10 ppm) is not phytotoxic and protected (80%) the plants against P. syringae pv. tomato attacks. ARGIRIUM­SUNCs at low doses induced hormetic effects on P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis as well as on tomato root growth. The use of ARGIRIUM­SUNCs in protecting plants against phytopathogenic bacteria is a possible alternative control measure. KEY POINTS: • ARGIRIUM­SUNC has strong antimicrobial activities against phytopathogenic bacteria; • ARGIRIUM­SUNC inhibits biofilm formation at low doses; • ARGIRIUM­SUNC protects tomato plants against bacterial speck disease.


Asunto(s)
Cobre , Plata , Humanos , Plata/farmacología , Cobre/farmacología , Clavibacter , Estrés Oxidativo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
4.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563366

RESUMEN

Xanthomonas citri pv. citri (Xcc) and X. citri pv. aurantifolii (Xca), causal agents of citrus bacterial canker, are both regulated by the European Union to prevent their introduction. Xcc is responsible for severe outbreaks of citrus production worldwide, therefore, a prompt and reliable detection is advisable for the early detection of this bacterium either in symptomatic or asymptomatic plant material. The current EPPO (European and Mediterranean Plant Protection Organization) diagnostic protocol, PM 7/44(1), includes several diagnostic tests even if new assays have been developed in the latter years for which validation data are needed. Recently, a test performance study was organized within the Valitest EU Project to validate Xcc diagnostic methods and provide evidence on the most reliable assays; however, the influence of DNA extraction methods (DEM) on the reliability of the detection has never been assessed. In this study we evaluate four different DEM, by following two different approaches: (i) a comparison by real-time PCR standard curves of bacterial DNA versus bacterial DNA added to plant DNA (lemon, leaves and fruit; orange fruit); and (ii) the evaluation of performance criteria of spiked samples (plant extract added with ten-fold diluted bacterial suspensions at known concentrations). Droplet digital PCR is developed and compared with real-time PCR, as the detection method.


Asunto(s)
Citrus , Xanthomonas , Citrus/genética , ADN Bacteriano/genética , Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Xanthomonas/genética
5.
J Cell Sci ; 127(Pt 22): 4813-20, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25217629

RESUMEN

Neuronal nitric oxide synthase (nNOS) and peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) are two fundamental factors involved in the regulation of skeletal muscle cell metabolism. nNOS exists as several alternatively spliced variants, each having a specific pattern of subcellular localisation. Nitric oxide (NO) functions as a second messenger in signal transduction pathways that lead to the expression of metabolic genes involved in oxidative metabolism, vasodilatation and skeletal muscle contraction. PGC-1α is a transcriptional coactivator and represents a master regulator of mitochondrial biogenesis by promoting the transcription of mitochondrial genes. PGC-1α can be induced during physical exercise, and it plays a key role in coordinating the oxidation of intracellular fatty acids with mitochondrial remodelling. Several lines of evidence demonstrate that NO could act as a key regulator of PGC-1α expression; however, the link between nNOS and PGC-1α in skeletal muscle remains only poorly understood. In this Commentary, we review important metabolic pathways that are governed by nNOS and PGC-1α, and aim to highlight how they might intersect and cooperatively regulate skeletal muscle mitochondrial and lipid energetic metabolism and contraction.


Asunto(s)
Músculo Esquelético/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Factores de Transcripción/metabolismo , Animales , Humanos , Músculo Esquelético/enzimología , Óxido Nítrico Sintasa de Tipo I/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Factores de Transcripción/genética
6.
Mediators Inflamm ; 2014: 917698, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24817795

RESUMEN

Ageing is characterized by the expansion and the decreased vascularization of visceral adipose tissue (vAT), disruption of metabolic activities, and decline of the function of the immune system, leading to chronic inflammatory states. We previously demonstrated that, in vAT of mice at early state of ageing, adipocytes mount a stress resistance response consisting in the upregulation of ATGL, which is functional in restraining the production of inflammatory cytokines. Here, we found that, in the late phase of ageing, such an adaptive response is impaired. In particular, 24-months-old mice and aged 3T3-L1 adipocytes display affected expression of ATGL and its downstream PPARα-mediated lipid signalling pathway, leading to upregulation of TNFα and IL-6 production. We show that the natural polyphenol compound resveratrol (RSV) efficiently suppresses the expression of TNFα and IL-6 in an ATGL/PPARα dependent manner. Actually, adipocytes downregulating ATGL do not show a restored PPARα expression and display elevated cytokines production. Overall the results obtained highlight a crucial function of ATGL in inhibiting age-related inflammation and reinforce the idea that RSV could represent a valid natural compound to limit the onset and/or the exacerbation of the age-related inflammatory states.


Asunto(s)
Citocinas/metabolismo , Lipasa/metabolismo , Estilbenos/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Resveratrol , Factor de Necrosis Tumoral alfa/metabolismo
7.
Plants (Basel) ; 13(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39204622

RESUMEN

Xylella fastidiosa subsp. pauca ST53 (XFP), the causal agent of olive quick decline syndrome (OQDS), was thoroughly investigated after a 2013 outbreak in the Salento region of Southern Italy. Some trees from Ogliarola Salentina and Cellina di Nardò, susceptible cultivars in the Gallipoli area, the first XFP infection hotspot in Italy, have resprouted crowns and are starting to flower and yield fruits. Satellite imagery and Normalized Difference Vegetation Index analyses revealed a significant improvement in vegetation health and productivity from 2018 to 2022 of these trees. Lipid molecules have long been recognized as plant defense modulators, and recently, we investigated their role in XFP-positive hosts and in XFP-resistant as well as in XFP-susceptible cultivars of olive trees. Here, we present a case study regarding 36 olive trees (12 XFP-positive resprouting, 12 XFP-positive OQDS-symptomatic, and 12 XFP-negative trees) harvested in 2022 within the area where XFP struck first, killing millions of trees in a decade. These trees were analyzed for some free fatty acid, oxylipin, and plant hormones, in particular jasmonic and salicylic acid, by targeted LC-MS/MS. Multivariate analysis revealed that lipid markers of resistance (e.g., 13-HpOTrE), along with jasmonic and salicylic acid, were accumulated differently in the XFP-positive resprouting trees from both cultivars with respect to XFP-positive OQDS symptomatic and XFP-negative trees, suggesting a correlation of lipid metabolism with the resprouting, which can be an indication of the resiliency of these trees to OQDS. This is the first report concerning the resprouting of OQDS-infected olive trees in the Salento area.

8.
Front Plant Sci ; 13: 833245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528940

RESUMEN

In 2013, Xylella fastidiosa (Xf) was detected for the first time in Apulia and, subsequently, recognized as the causal agent of the olive quick decline syndrome (OQDS). To contain the disease, the olive germplasm was evaluated for resistance to Xf, identifying cultivars with different susceptibility to the pathogen. Regarding this, the resistant cultivar Leccino has generally a lower bacterial titer compared with the susceptible cultivar Ogliarola salentina. Among biomolecules, lipids could have a pivotal role in the interaction of Xf with its host. In the grapevine Pierce's disease, fatty acid molecules, the diffusible signaling factors (DSFs), act as regulators of Xf lifestyle and are crucial for its virulence. Other lipid compounds derived from fatty acid oxidation, namely, oxylipins, can affect, in vitro, biofilm formation in Xf subsp. pauca (Xfp) strain De Donno, that is, the strain causing OQDS. In this study, we combined high-performance liquid chromatography-mass spectrometry-MS-based targeted lipidomics with supervised learning algorithms (random forest, support vector machine, and neural networks) to classify olive tree samples from Salento. The dataset included samples from either OQDS-positive or OQDS-negative olive trees belonging either to cultivar Ogliarola salentina or Leccino treated or not with the zinc-copper-citric acid biocomplex Dentamet®. We built classifiers using the relative differences in lipid species able to discriminate olive tree samples, namely, (1) infected and non-infected, (2) belonging to different cultivars, and (3) treated or untreated with Dentamet®. Lipid entities emerging as predictors of the thesis are free fatty acids (C16:1, C18:1, C18:2, C18:3); the LOX-derived oxylipins 9- and 13-HPOD/TrE; the DOX-derived oxylipin 10-HPOME; and diacylglyceride DAG36:4(18:1/18:3).

9.
Pathogens ; 10(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478174

RESUMEN

During recent years; Xylella fastidiosa subsp. pauca (Xfp) has spread in Salento causing relevant damage to the olive groves. Measures to contain the spreading of the pathogen include the monitoring of the areas bordering the so-called "infected" zone and the tree eradication in case of positive detection. In order to provide a control strategy aimed to maintain the tree productivity in the infected areas, we further evaluated the in vitro and in planta mid-term effectiveness of a zinc-copper-citric acid biocomplex. The compound showed an in vitro bactericidal activity and inhibited the biofilm formation in representative strains of X. fastidiosa subspecies, including Xfp isolated in Apulia from olive trees. The field mid-term evaluation of the control strategy assessed by quantitative real-time PCR in 41 trees of two olive groves of the "infected" area revealed a low concentration of Xfp over the seasons upon the regular spraying of the biocomplex over 3 or 4 consecutive years. In particular, the bacterial concentration lowered in July and October with respect to March, after six consecutive treatments. The trend was not affected by the cultivar and it was similar either in the Xfp-sensitive cultivars Ogliarola salentina and Cellina di Nardò or in the Xfp-resistant Leccino. Moreover, the scoring of the number of wilted twigs over the seasons confirmed the trend. The efficacy of the treatment in the management of olive groves subjected to a high pathogen pressure is highlighted by the yielded a good oil production.

10.
Pathogens ; 10(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072394

RESUMEN

Xylella fastidiosa subsp. pauca is the causal agent of "olive quick decline syndrome" in Salento (Apulia, Italy). On April 2015, we started interdisciplinary studies to provide a sustainable control strategy for this pathogen that threatens the multi-millennial olive agroecosystem of Salento. Confocal laser scanning microscopy and fluorescence quantification showed that a zinc-copper-citric acid biocomplex-Dentamet®-reached the olive xylem tissue either after the spraying of the canopy or injection into the trunk, demonstrating its effective systemicity. The biocomplex showed in vitro bactericidal activity towards all X. fastidiosa subspecies. A mid-term evaluation of the control strategy performed in some olive groves of Salento indicated that this biocomplex significantly reduced both the symptoms and X. f. subsp. pauca cell concentration within the leaves of the local cultivars Ogliarola salentina and Cellina di Nardò. The treated trees started again to yield. A 1H-NMR metabolomic approach revealed, upon the treatments, a consistent increase in malic acid and γ-aminobutyrate for Ogliarola salentina and Cellina di Nardò trees, respectively. A novel endotherapy technique allowed injection of Dentamet® at low pressure directly into the vascular system of the tree and is currently under study for the promotion of resprouting in severely attacked trees. There are currently more than 700 ha of olive groves in Salento where this strategy is being applied to control X. f. subsp. pauca. These results collectively demonstrate an efficient, simple, low-cost, and environmentally sustainable strategy to control this pathogen in Salento.

11.
Nanomaterials (Basel) ; 10(6)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560195

RESUMEN

Recently, there is a growing demand in sustainable phytopathogens control research. Nanotechnology provides several tools such as new pesticides formulations, antibacterial nanomaterials and smart delivery systems. Metal nano-oxides and different biopolymers have been exploited in order to develop nanopesticides which can offer a targeted solution minimizing side effects on environment and human health. This work proposed a nanotechnological approach to obtain a new formulation of systemic fungicide fosetyl-Al employing ultrasonication assisted production of water dispersible nanocrystals. Moreover, chitosan was applicated as a coating agent aiming a synergistic antimicrobial effect between biopolymer and fungicide. Fosetyl-Al nanocrystals have been characterized by morphological and physical-chemical analysis. Nanotoxicological investigation was carried out on human keratinocytes cells through cells viability test and ultrastructural analysis. In vitro planktonic growth, biofilm production and agar dilution assays have been conducted on two Xylella fastidiosa subspecies. Fosetyl-Al nanocrystals resulted very stable over time and less toxic respect to conventional formulation. Finally, chitosan-based fosetyl-Al nanocrystals showed an interesting antibacterial activity against Xylella fastidiosa subsp. pauca and Xylella fastidiosa subsp. fastidiosa.

12.
Front Cell Neurosci ; 12: 4, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29387000

RESUMEN

Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.

13.
Oncotarget ; 8(48): 83407-83418, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29137352

RESUMEN

Mitochondrial dysfunction, inflammation and senescence-like features are observed in adipose depots in aging and obesity. Herein, we evaluated how maternal high calorie diet (HCD) may impact on subcutaneous adipose tissue (sAT) of the newborn mice. Adult C57BL/6J mice were randomly divided in three groups: normal calorie diet (NCD), HCD and HCD supplemented with niacin 8 weeks before mating. Mothers and pups were then sacrificed and metabolic and molecular analyses were carried out on sAT. HCD induced mitochondria dysfunction in mothers without inflammation and senescence, whereas in pups we also revealed the occurrence of senescent phenotype. The mitochondrial dysfunction-associated senescence in pups was accompanied by a drop in NAD+/NADH ratio and alteration in the NAD+-dependent enzymes PARP1 and SIRT1. Importantly, maternal dietary supplementation with niacin during gestation and lactation restrained NAD+/NADH decrease imposed by HCD limiting inflammatory cytokine production and senescence phenotype in newborn sAT. Given the fundamental role of sAT in buffering nutrient overload and avoiding pathogenic ectopic fat accumulation, we suggest that NAD+ boosting strategies during maternal HCD could be helpful in limiting sAT dysfunction in newborn.

14.
Oncotarget ; 7(17): 23019-32, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27056902

RESUMEN

During aging skeletal muscle shows an accumulation of oxidative damage as well as intramyocellular lipid droplets (IMLDs). However, although the impact of these modifications on muscle tissue physiology is well established, the direct effectors critical for their occurrence are poorly understood. Here we show that during aging the main lipase of triacylglycerols, ATGL, significantly declines in gastrocnemius and its downregulation in C2C12 myoblast leads to the accumulation of lipid droplets. Indeed, we observed an increase of oxidative damage to proteins in terms of carbonylation, S-nitrosylation and ubiquitination that is dependent on a defective antioxidant cell response mediated by ATGL-PPARα-PGC-1α. Overall our findings describe a pivotal role for ATGL in the antioxidant/anti-inflammatory response of muscle cells highlighting this lipase as a therapeutic target for fighting the progressive decline in skeletal muscle mass and strength.


Asunto(s)
Envejecimiento/fisiología , Antioxidantes/farmacología , Ácidos Grasos/metabolismo , Homeostasis/fisiología , Lipasa/metabolismo , Músculo Esquelético/patología , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Biomarcadores/metabolismo , Proliferación Celular , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Oxidación-Reducción , Carbonilación Proteica , Ubiquitinación
15.
Aging (Albany NY) ; 7(10): 869-81, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26540513

RESUMEN

Fasting promotes longevity by reprogramming metabolic and stress resistance pathways. However, although the impact on adipose tissue physiology through hormonal inputs is well established, the direct role of fasting on adipose cells is poorly understood. Herein we show that white and beige adipocytes, as well as mouse epididymal and subcutaneous adipose depots, respond to nutrient scarcity by acquiring a brown-like phenotype. Indeed, they improve oxidative metabolism through modulating the expression of mitochondrial- and nuclear-encoded oxidative phosphorylation genes as well as mitochondrial stress defensive proteins (UCP1, SOD2). Such adaptation is placed in a canonical mitohormetic response that proceeds via mitochondrial reactive oxygen species ((mt)ROS) production and redistribution of FoxO1 transcription factor into nucleus. Nuclear FoxO1 ((n)FoxO1) mediates retrograde communication by inducing the expression of mitochondrial oxidative and stress defensive genes. Collectively, our findings describe an unusual white/beige fat cell response to nutrient availability highlighting another health-promoting mechanism of fasting.


Asunto(s)
Adipocitos Blancos/metabolismo , Tejido Adiposo Blanco/metabolismo , Ayuno/metabolismo , Mitocondrias/metabolismo , Células 3T3-L1 , Animales , Privación de Alimentos , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Hormesis , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína Desacopladora 1
16.
Sci Rep ; 5: 13091, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26260892

RESUMEN

Adipose tissue metabolically adapts to external stimuli. We demonstrate that the induction of the thermogenic program in white adipocytes, through cold exposure in mice or in vitro adrenergic stimulation, is accompanied by a decrease in the intracellular content of glutathione (GSH). Moreover, the treatment with a GSH depleting agent, buthionine sulfoximine (BSO), recapitulates the effect of cold exposure resulting in the induction of thermogenic program. In particular, BSO treatment leads to enhanced uncoupling respiration as demonstrated by increased expression of thermogenic genes (e.g. Ucp1, Ppargc1a), augmented oxygen consumption and decreased mitochondrial transmembrane potential. Buffering GSH decrement by pre-treatment with GSH ester prevents the up-regulation of typical markers of uncoupling respiration. We demonstrate that FoxO1 activation is responsible for the conversion of white adipocytes into a brown phenotype as the "browning" effects of BSO are completely abrogated in cells down-regulating FoxO1. In mice, the BSO-mediated up-regulation of uncoupling genes results in weight loss that is at least in part ascribed to adipose tissue mass reduction. The induction of thermogenic program has been largely proposed to counteract obesity-related diseases. Based on these findings, we propose GSH as a novel therapeutic target to increase energy expenditure in adipocytes.


Asunto(s)
Adipocitos Blancos/metabolismo , Glutatión/metabolismo , Células 3T3-L1 , Tejido Adiposo Pardo/citología , Animales , Transdiferenciación Celular , Células Cultivadas , Epidídimo/citología , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Grasa Intraabdominal/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Termogénesis
17.
Front Physiol ; 6: 272, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26483700

RESUMEN

Chronic nutrient overload accelerates the onset of several aging-related diseases reducing life expectancy. Although the mechanisms by which overnutrition affects metabolic processes in many tissues are known, its role on BAT physiology is still unclear. Herein, we investigated the mitochondrial responses in BAT of female mice exposed to high fat diet (HFD) at different steps of life. Although adult mice showed an unchanged mitochondrial amount, both respiration and OxPHOS subunits were strongly affected. Differently, offspring pups exposed to HFD during pregnancy and lactation displayed reduced mitochondrial mass but high oxidative efficiency that, however, resulted in increased bioenergetics state of BAT rather than augmented uncoupling respiration. Interestingly, the metabolic responses triggered by HFD were accompanied by changes in mitochondrial dynamics characterized by decreased content of the fragmentation marker Drp1 both in mothers and offspring pups. HFD-induced inactivation of the FoxO1 transcription factor seemed to be the up-stream modulator of Drp1 levels in brown fat cells. Furthermore, HFD offspring pups weaned with normal diet only partially reverted the mitochondrial dysfunctions caused by HFD. Finally these mice failed in activating the thermogenic program upon cold exposure. Collectively our findings suggest that maternal dietary fat overload irreversibly commits BAT unresponsiveness to physiological stimuli such as cool temperature and this dysfunction in the early stage of life might negatively modulate health and lifespan.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA