Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 217: 114875, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435500

RESUMEN

An exemplary vision to understand the fundamental role of metal-doped multi-components system such as Au/Ag doped CZTS (Cu2ZnSnS4) nanocrystals encourages the non-vacuum approach for the best performing photocatalyst. Hydrophilic nanoparticles (Au/Ag and CZTS) are allowed to amalgamate under NTP atmosphere, eradicating the prerequisite for high-end equipment. The potential of Au and Ag-doped CZTS nanoparticles was speculated using various optical and structural characterizations. The absorption range of CZTS nanoparticles lies in the visible range, while Au/Ag doping slightly red-shifts the absorption range, considered the desirable state for photocatalysis. The synthesized nanoparticles are highly monodispersed with ∼15-35 nm particle size for Ag, Au, and CZTS. Photocatalysis is a discernible scheme for treating wastewater containing dyes, textile effluents, chemicals, and heavy metals. Here, we strive to use these ex-situ synthesized nanomaterials as photocatalysts, where the real textile waste (collected from industrial outlets), dyes, and heavy metal (chromium (VI)) have been photo-reduced after scrutinizing the finest combination of Ag or Au doped CZTS. Au-CZTS shows superior catalytic activity with an efficiency of 99.7% with a rate constant of 0.2 min-1 (while Ag-CZTS shows 90% efficiency with a rate constant of 0.07 min-1); hence, used for real textile waste and heavy metal (Chromium VI) photo-reduction. The maximum efficiency achieved for textile-1, textile-2, and Cr (VI) reductions is 80%, 70%, and 97%, respectively. The nanocrystals are highly stable and recyclable, tested for 15 repeated cycles. These studies pave the way for developing cost-effective, environmentally-friendly, durable, and selective semiconductor-metal (Au/Ag) hybrid heterostructures as visible-light-driven photocatalysts for wastewater remediation.


Asunto(s)
Metales Pesados , Nanopartículas , Aguas Residuales , Nanopartículas/química , Colorantes/química , Textiles
2.
Heliyon ; 10(12): e33243, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021962

RESUMEN

Metal halide Pb-based and Pb-free perovskite crystal structures are an essential class of optoelectronic materials due to their significant optoelectronic properties, optical absorption and tuneable emission spectrum properties. However, the most efficient optoelectronic devices were based on the Pb as a monovalent cation, but its toxicity is a significant hurdle for commercial device applications. Thus, replacing the toxic Pb with Pb-free alternatives (such as tin (Sn)) for diverse photovoltaic and optoelectronic applications is essential. Moreover, replacing the volatile methylammonium (MA) with cesium (Cs) leads to the development of an efficient perovskite absorber layer with improved optical & thermal stability and stabilized photoconversion efficiency. This paper discusses the correlation between the experimental and theoretical work for the Pb-based and Pb-free perovskites synthesised using the hot-injection method at different temperatures. Here, simulation is also carried out using the help of SCAPS-1D software to study the effect of various parameters of CsSnI3 and CsPbI3 layers on solar cell performance. This experimental and theoretical comparative study of the Hot-injection method synthesised CsPbI3 and CsSnI3 perovskites is rarely investigated for optoelectronic applications.

3.
ACS Omega ; 8(10): 9230-9238, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936276

RESUMEN

Wastewater treatment is becoming increasingly important due to the potential shortage of pure drinking water in many parts of the world. Adsorption offers a potential technique for the uptake of contaminants and wastewater purification. In the last two decades, several efforts have been made to remove fast green (FG) dye from wastewater via different adsorbent materials. However, adsorption capacity shown by these adsorbents is low and time-consuming. Herein, we have synthesized for the first time a new powdered adsorbent ZnOS+C, modified zinc peroxide with sulfur and activated carbon to effectively remove FG dye from wastewater. Results of batch adsorption experiments have suggested that ZnOS+C has the maximum adsorption potential of 238.28 mg/g for FG dye within 120 min of adsorption equilibrium for a wide range of pH ranging from 2 to 10 pH. The adsorption process conforms to the Freundlich isotherm model, suggesting a multilayered adsorption process on the outer surface of ZnOS+C. The adsorption kinetics study indicates that the kinetics of the reaction are the intraparticle diffusion model. Briefly, this study shows proof of the application of ZnOS+C powder as a new eco-friendly adsorbent with extremely high efficiency and high surface area for removing FG dye.

4.
J Nanosci Nanotechnol ; 12(9): 7105-12, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23035440

RESUMEN

The antimicrobial activities of zirconia (ZrO2) nanoparticles and zirconium mixed ligand complexes were studied on bacterial strains of E. coli, S. aureus and fungal strain of A. niger. The nanoparticles of zirconia and Zr(IV) complexes with different amino acids as ligands were synthesized by hydrothermal method. X-ray diffraction (XRD) and HRTEM confirmed the crystalline nature and morphology of the synthesized products. The antimicrobial studies revealed that the zirconia exhibits activity only against the E. coli, whereas, the Zr(IV) complexes exhibits activity against both the bacteria: gram -ve E. coli and gram +ve S. aureus as well as fungal strains. The Zr(IV) complexes are found to possess significant antifungal activity against A. niger. The results are indicative of crystal plane-dependent antimicrobial activity of zirconia nanoparticles and complexes. The observed difference in the antibacterial activity of ZrO2 crystals and Zr(IV) complexes may be ascribed to the atomic arrangements of different exposed surfaces. On the basis of the study, it could be speculated that the ZrO2 nanoparticles with the same surface areas but with different shapes i.e., different active facets will show different antimicrobial activity.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas , Circonio/farmacología , Aspergillus niger/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Microscopía Electrónica de Transmisión , Difracción de Rayos X
5.
ACS Omega ; 7(42): 37674-37682, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36312412

RESUMEN

The advancements in the areas of wearable devices and flexible electronic skin have led to the synthesis of scalable, ultrasensitive sensors to detect and differentiate multimodal stimuli and dynamic human movements. Herein, we reveal a novel architecture of an epidermal sensor fabricated by sandwiching the buckypaper between the layers of poly(dimethylsiloxane) (PDMS). This mechanically robust sensor can be conformally adhered on skin and has the perception capability to detect real-time transient human motions and the multimodal mechanical stimuli of stretching, bending, tapping, and twisting. The sensor has feasibility for real-time health monitoring as it can distinguish a wide range of human physiological activities like breathing, gulping, phonation, pulse monitoring, and finger and wrist bending. This multimodal wearable epidermal sensor possesses an ultrahigh gauge factor (GF) of 9178 with a large stretchability of 56%, significant durability for 5000 stretching-releasing cycles, and a fast response/recovery time of 59/88 ms. We anticipate that this novel, simple, and scalable design of a sensor with outstanding features will pave a new way to consummate the requirements of wearable electronics, flexible touch sensors, and electronic skin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA