RESUMEN
Up to 350 million people worldwide suffer from a rare disease, and while the individual diseases are rare, in aggregate they represent a substantial challenge to global health systems. The majority of rare disorders are genetic in origin, with children under the age of five disproportionately affected. As these conditions are difficult to identify clinically, genetic and genomic testing have become the backbone of diagnostic testing in this population. In the last 10 years, next-generation sequencing technologies have enabled testing of multiple disease genes simultaneously, ranging from targeted gene panels to exome sequencing (ES) and genome sequencing (GS). GS is quickly becoming a practical first-tier test, as cost decreases and performance improves. A growing number of studies demonstrate that GS can detect an unparalleled range of pathogenic abnormalities in a single laboratory workflow. GS has the potential to deliver unbiased, rapid and accurate molecular diagnoses to patients across diverse clinical indications and complex presentations. In this paper, we discuss clinical indications for testing and historical testing paradigms. Evidence supporting GS as a diagnostic tool is supported by superior genomic coverage, types of pathogenic variants detected, simpler laboratory workflow enabling shorter turnaround times, diagnostic and reanalysis yield, and impact on healthcare.
Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Enfermedades Raras/genética , Niño , Exoma/genética , Enfermedades Genéticas Congénitas/diagnóstico , Genoma Humano/genética , Humanos , Lactante , Enfermedades Raras/diagnóstico , Secuenciación del Exoma/tendencias , Secuenciación Completa del GenomaRESUMEN
Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12-73%), 33% (6-86%) in cohorts with prior genetic testing, and 33% (9-60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24-100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.
RESUMEN
We examined the roles of the amygdala and hippocampus in the formation of emotionally relevant memories using an ethological model of conditioned fear termed conditioned defeat (CD). Temporary inactivation of the ventral, but not dorsal hippocampus (VH, DH, respectively) using muscimol disrupted the acquisition of CD, whereas pretraining VH infusions of anisomycin, a protein synthesis inhibitor, failed to block CD. To test for a functional connection between the VH and basolateral amygdala (BLA), we used a classic functional connectivity design wherein injections are made unilaterally in brain areas either on the same or opposite sides of the brain. A functional connection between the BLA and VH necessary for the acquisition of CD could not be found because unilateral inactivation of either BLA alone (but not either VH alone) was sufficient to disrupt CD. This finding suggested instead that there may be a critical functional connection between the left and right BLA. In our final experiment, we infused muscimol unilaterally in the BLA and assessed Fos immunoreactivity on the contralateral side following exposure to social defeat. Inactivation of either BLA significantly reduced defeat-induced Fos immunoreactivity in the contralateral BLA. These experiments demonstrate for the first time that whereas the VH is necessary for the acquisition of CD, it does not appear to mediate the plastic changes underlying CD. There also appears to be a critical interaction between the two BLAs such that bilateral activation of this brain area must occur in order to support fear learning in this model, a finding that is unprecedented to date.
Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Hipocampo/fisiología , Vías Nerviosas/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Anisomicina/farmacología , Condicionamiento Clásico/efectos de los fármacos , Cricetinae , Dominación-Subordinación , Miedo/efectos de los fármacos , Agonistas del GABA/farmacología , Hipocampo/efectos de los fármacos , Masculino , Mesocricetus , Muscimol/farmacología , Vías Nerviosas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacologíaRESUMEN
Whole-genome sequencing (WGS) is positioned to become one of the most robust strategies for achieving timely diagnosis of rare genomic diseases. Despite its favorable diagnostic performance compared to conventional testing strategies, routine use and reimbursement of WGS are hampered by inconsistencies in the definition and measurement of clinical utility. For example, what constitutes clinical utility for WGS varies by stakeholder's perspective (physicians, patients, families, insurance companies, health-care organizations, and society), clinical context (prenatal, pediatric, critical care, adult medicine), and test purpose (diagnosis, screening, treatment selection). A rapidly evolving technology landscape and challenges associated with robust comparative study design in the context of rare disease further impede progress in this area of empiric research. To address this challenge, an expert working group of the Medical Genome Initiative was formed. Following a consensus-based process, we align with a broad definition of clinical utility and propose a conceptually-grounded and empirically-guided measurement toolkit focused on four domains of utility: diagnostic thinking efficacy, therapeutic efficacy, patient outcome efficacy, and societal efficacy. For each domain of utility, we offer specific indicators and measurement strategies. While we focus on diagnostic applications of WGS for rare germline diseases, this toolkit offers a flexible framework for best practices around measuring clinical utility for a range of WGS applications. While we expect this toolkit to evolve over time, it provides a resource for laboratories, clinicians, and researchers looking to characterize the value of WGS beyond the laboratory.
RESUMEN
Clinical whole-genome sequencing (WGS) offers clear diagnostic benefits for patients with rare disease. However, there are barriers to its widespread adoption, including a lack of standards for clinical practice. The Medical Genome Initiative consortium was formed to provide practical guidance and support the development of standards for the use of clinical WGS.
Asunto(s)
Genoma Humano , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/normasRESUMEN
Whole-genome sequencing (WGS) has shown promise in becoming a first-tier diagnostic test for patients with rare genetic disorders; however, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading healthcare and research organizations in the US and Canada, was formed to expand access to high-quality clinical WGS by publishing best practices. Here, we present consensus recommendations on clinical WGS analytical validation for the diagnosis of individuals with suspected germline disease with a focus on test development, upfront considerations for test design, test validation practices, and metrics to monitor test performance. This work also provides insight into the current state of WGS testing at each member institution, including the utilization of reference and other standards across sites. Importantly, members of this initiative strongly believe that clinical WGS is an appropriate first-tier test for patients with rare genetic disorders, and at minimum is ready to replace chromosomal microarray analysis and whole-exome sequencing. The recommendations presented here should reduce the burden on laboratories introducing WGS into clinical practice, and support safe and effective WGS testing for diagnosis of germline disease.
RESUMEN
Syrian hamsters readily form dominant-subordinate relationships under laboratory conditions. Winning or losing in agonistic encounters can have striking, long-term effects on social behavior, but the mechanisms underlying this experience-induced behavioral plasticity are unclear. The present study tested the hypothesis that changes in brain-derived neurotrophic factor (BDNF) may at least in part mediate this plasticity. Male hamsters were paired for 15-min using a resident-intruder model, and individuals were identified as winners or losers on the basis of their behavior. BDNF was examined with in situ hybridization 2 hr after treatment during the consolidation period of emotional learning. Losing animals had significantly more BDNF mRNA in the basolateral (BLA) and medial (MeA) nuclei of the amygdala when compared with winning animals as well as novel cage and home cage controls. Interestingly, winning animals had significantly more BDNF mRNA in the dentate gyrus of the dorsal hippocampus than did losing animals, novel, and home cage controls. No conflict-related changes in BDNF mRNA were observed in several other regions including the bed nucleus of the stria terminalis and central amygdala. Next, we demonstrated that K252a, a Trk receptor antagonist, significantly reduced the acquisition of conditioned defeat when administered within the BLA. These data support a model in which BDNF-mediated plasticity within the BLA supports learning of submission or subordinate social status in losing animals, whereas BDNF-mediated plasticity within the hippocampus may instantiate aspects of winning such as control of a territory in dominant animals.