Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 11(3): 1190-4, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21322598

RESUMEN

The initial stages of epitaxial graphene growth were studied by characterization of graphene formed in localized areas on C-face 6H-SiC substrates. The graphene areas were determined to lie below the level of the surrounding substrate and showed different morphologies based on size. Employing electron channeling contrast imaging, the presence of threading screw dislocations was indicated near the centers of each of these areas. After the graphene was removed, these dislocations were revealed to lie within the SiC substrate. These observations suggest that screw dislocations act as preferred nucleation sites for graphene growth on C-face SiC.

2.
Nano Lett ; 10(5): 1559-62, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20397734

RESUMEN

We present the first microscopic transport study of epitaxial graphene on SiC using an ultrahigh vacuum four-probe scanning tunneling microscope. Anisotropic conductivity is observed that is caused by the interaction between the graphene and the underlying substrate. These results can be explained by a model where charge buildup at the step edges leads to local scattering of charge carriers. This highlights the importance of considering substrate effects in proposed devices that utilize nanoscale patterning of graphene on electrically isolated substrates.


Asunto(s)
Compuestos Inorgánicos de Carbono/química , Cristalización/métodos , Grafito/química , Microscopía de Sonda de Barrido/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Compuestos de Silicona/química , Conductividad Eléctrica , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
3.
Nano Lett ; 10(10): 3962-5, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20804213

RESUMEN

We report the first observation of linear magnetoresistance (LMR) in multilayer epitaxial graphene grown on SiC. We show that multilayer epitaxial graphene exhibits large LMR from 2.2 K up to room temperature and that it can be best explained by a purely quantum mechanical model. We attribute the observation of LMR to inhomogeneities in the epitaxially grown graphene film. The large magnitude of the LMR suggests potential for novel applications in areas such as high-density data storage and magnetic sensors and actuators.

4.
Nano Lett ; 9(7): 2605-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19583281

RESUMEN

We present X-ray photoelectron spectroscopy, van der Pauw Hall mobilities, low-temperature far-infrared magneto transmission (FIR-MT), and atomic force microscopy (AFM) results from graphene films produced by radiative heating in an ultrahigh vacuum (UHV) chamber or produced by radio frequency (RF) furnace annealing in a high vacuum chemical vapor deposition system on Si- and C-face 4H SiC substrates at 1200-1600 degrees C. Although the vacuum level and heating methods are different, graphene films produced by the two methods are chemically similar with the RF furnace annealing typically producing thicker graphene films than UHV. We observe, however, that the formation of graphene on the two faces is different with the thicker graphene films on the C-face RF samples having higher mobility. The FIR-MT showed a 0(-1) --> 1(0) Landau level transition with a square root B dependence and a line width consistent with a Dirac fermion with a mobility >250,000 cm(2) x V(-1) x s(-1) at 4.2 K in a C-face RF sample having a Hall-effect carrier mobility of 425 cm(2) x V(-1) x s(-1) at 300 K. AFM shows that graphene grows continuously over the varying morphology of both Si and C-face substrates.


Asunto(s)
Carbono/química , Grafito/química , Ondas de Radio , Silicio/química , Grafito/síntesis química , Grafito/clasificación , Calor , Microscopía de Fuerza Atómica/métodos , Análisis Espectral/métodos , Vacio
5.
Nano Lett ; 9(8): 2873-6, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19719106

RESUMEN

We report a direct correlation between carrier mobility and Raman topography of epitaxial graphene (EG) grown on silicon carbide (SiC). We show the Hall mobility of material on SiC(0001) is highly dependent on thickness and monolayer strain uniformity. Additionally, we achieve high mobility epitaxial graphene (18100 cm(2)/(V s) at room temperature) on SiC(0001) and show that carrier mobility depends strongly on the graphene layer stacking.

6.
Sci Rep ; 3: 3143, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24189548

RESUMEN

The remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC. Moreover, the magnetic field and photon energy dependence of these features enable us to explore the band structure, electron-hole band asymmetries, and mechanisms that activate a CR response in the Kerr effect for various multilayers that coexist in a single sample. Surprisingly, we find that the magnitude of monolayer Kerr effect CRs is not temperature dependent. This unexpected result reveals new questions about the underlying physics that makes such an effect possible.

7.
ACS Nano ; 4(2): 1108-14, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20099904

RESUMEN

To make graphene technologically viable, the transfer of graphene films to substrates appropriate for specific applications is required. We demonstrate the dry transfer of epitaxial graphene (EG) from the C-face of 4H-SiC onto SiO(2), GaN and Al(2)O(3) substrates using a thermal release tape. Subsequent Hall effect measurements illustrated that minimal degradation in the carrier mobility was induced following the transfer process in lithographically patterned devices. Correspondingly, a large drop in the carrier concentration was observed following the transfer process, supporting the notion that a gradient in the carrier density is present in C-face EG, with lower values being observed in layers further removed from the SiC interface. X-ray photoemission spectra collected from EG films attached to the transfer tape revealed the presence of atomic Si within the EG layers, which may indicate the identity of the unknown intrinsic dopant in EG. Finally, this transfer process is shown to enable EG films amenable for use in device fabrication on arbitrary substrates and films that are deemed most beneficial to carrier transport, as flexible electronic devices or optically transparent contacts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA