Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486048

RESUMEN

Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.

2.
J Neurosci ; 41(11): 2475-2495, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33472828

RESUMEN

The dentate gyrus (DG) of the hippocampus is important for cognition and behavior. However, the circuits underlying these functions are unclear. DG mossy cells (MCs) are potentially important because of their excitatory synapses on the primary cell type, granule cells (GCs). However, MCs also activate GABAergic neurons, which inhibit GCs. We used viral delivery of designer receptors exclusively activated by designer drugs (DREADDs) in mice to implement a gain- and loss-of-function study of MCs in diverse behaviors. Using this approach, manipulations of MCs could bidirectionally regulate behavior. The results suggest that inhibiting MCs can reduce anxiety-like behavior and improve cognitive performance. However, not all cognitive or anxiety-related behaviors were influenced, suggesting specific roles of MCs in some, but not all, types of cognition and anxiety. Notably, several behaviors showed sex-specific effects, with females often showing more pronounced effects than the males. We also used the immediate early gene c-Fos to address whether DREADDs bidirectionally regulated MC or GC activity. We confirmed excitatory DREADDs increased MC c-Fos. However, there was no change in GC c-Fos, consistent with MC activation leading to GABAergic inhibition of GCs. In contrast, inhibitory DREADDs led to a large increase in GC c-Fos, consistent with a reduction in MC excitation of GABAergic neurons, and reduced inhibition of GCs. Together, these results suggest that MCs regulate anxiety and cognition in specific ways. We also raise the possibility that cognitive performance may be improved by reducing anxiety.SIGNIFICANCE STATEMENT The dentate gyrus (DG) has many important cognitive roles as well as being associated with affective behavior. This study addressed how a glutamatergic DG cell type called mossy cells (MCs) contributes to diverse behaviors, which is timely because it is known that MCs regulate the activity of the primary DG cell type, granule cells (GCs), but how MC activity influences behavior is unclear. We show, surprisingly, that activating MCs can lead to adverse behavioral outcomes, and inhibiting MCs have an opposite effect. Importantly, the results appeared to be task-dependent and showed that testing both sexes was important. Additional experiments indicated what MC and GC circuitry was involved. Together, the results suggest how MCs influence behaviors that involve the DG.


Asunto(s)
Ansiedad/fisiopatología , Conducta Animal/fisiología , Cognición/fisiología , Giro Dentado/fisiología , Fibras Musgosas del Hipocampo/fisiología , Animales , Femenino , Masculino , Ratones
3.
J Neurosci ; 41(12): 2723-2732, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33536200

RESUMEN

Early life is a sensitive period, in which enhanced neural plasticity allows the developing brain to adapt to its environment. This plasticity can also be a risk factor in which maladaptive development can lead to long-lasting behavioral deficits. Here, we test how early-life exposure to the selective-serotonin-reuptake-inhibitor (SSRI), fluoxetine, affects motivation, and dopaminergic signaling in adulthood. We show for the first time that mice exposed to fluoxetine in the early postnatal period exhibit a reduction in effort-related motivation. These mice also show blunted responses to amphetamine and reduced dopaminergic activation in a sucrose reward task. Interestingly, we find that the reduction in motivation can be rescued in the adult by administering bupropion, a dopamine-norepinephrine reuptake inhibitor used as an antidepressant and a smoke cessation aid but not by fluoxetine. Taken together, our studies highlight the effects of early postnatal exposure of fluoxetine on motivation and demonstrate the involvement of the dopaminergic system in this process.SIGNIFICANCE STATEMENT The developmental period is characterized by enhanced plasticity. During this period, environmental factors have the potential to lead to enduring behavioral changes. Here, we show that exposure to the SSRI fluoxetine during a restricted period in early life leads to a reduction in adult motivation. We further show that this reduction is associated with decreased dopaminergic responsivity. Finally, we show that motivational deficits induced by early-life fluoxetine exposure can be rescued by adult administration of bupropion but not by fluoxetine.


Asunto(s)
Dopamina/metabolismo , Fluoxetina/farmacología , Locomoción/efectos de los fármacos , Motivación/efectos de los fármacos , Fenotipo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Animales Recién Nacidos , Femenino , Locomoción/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Microdiálisis/métodos , Motivación/fisiología
4.
Mol Psychiatry ; 26(9): 4795-4812, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32398719

RESUMEN

Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.


Asunto(s)
Ácido Glutámico , Área Tegmental Ventral , Animales , Neuronas Dopaminérgicas , Femenino , Ratones , Ratones Noqueados , Embarazo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
5.
Mol Psychiatry ; 25(12): 3304-3321, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-30120415

RESUMEN

Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.


Asunto(s)
Receptor de Serotonina 5-HT2C , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Ganglios Basales , Dopamina , Ratones , Serotonina , Sustancia Negra
6.
Cereb Cortex ; 26(11): 4282-4298, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27624722

RESUMEN

Significance Statement: The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic spines, the complexity of multisynaptic innervations and the degree of the perisynaptic astroglial ensheathment that controls synaptic homeostasis. These findings show a pivotal role of Reelin in GC synaptogenesis and provide a foundation for structural circuit alterations caused by Reelin deregulation that may occur in neurological and psychiatric disorders.


Asunto(s)
Encéfalo/citología , Moléculas de Adhesión Celular Neuronal/metabolismo , Espinas Dendríticas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Serina Endopeptidasas/metabolismo , Sinapsis/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/genética , Diferenciación Celular , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Mutación/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteína Reelina , Serina Endopeptidasas/genética , Transducción de Señal/fisiología , Sinapsis/ultraestructura , Transducción Genética
7.
Cell Mol Life Sci ; 73(18): 3569-82, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27010990

RESUMEN

Adult hippocampal neurogenesis (AHN) is a key process for certain types of hippocampal-dependent learning. Alzheimer's disease (AD) is accompanied by memory deficits related to alterations in AHN. Given that the increased activity of GSK-3ß has been related to alterations in the population of hippocampal granule neurons in AD patients, we designed a novel methodology by which to induce selective GSK-3ß overexpression exclusively in newborn granule neurons. To this end, we injected an rtTA-IRES-EGFP-expressing retrovirus into the hippocampus of tTO-GSK-3ß mice. Using this novel retroviral strategy, we found that GSK-3ß caused a cell-autonomous impairment of the morphological and synaptic maturation of newborn neurons. In addition, we examined whether GSK-3ß overexpression in newborn neurons limits the effects of physical activity. While physical exercise increased the number of dendritic spines, the percentage of mushroom spines, and the head diameter of the same in tet-OFF cells, these effects were not triggered in tet-ON cells. This observation suggests that GSK-3ß blocks the stimulatory actions of exercise. Given that the activity of GSK-3ß is increased in the brains of individuals with AD, these data may be relevant for non-pharmacological therapies for AD.


Asunto(s)
Vectores Genéticos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neuronas/metabolismo , Condicionamiento Físico Animal , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Vectores Genéticos/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Inmunohistoquímica , Ratones , Microscopía Fluorescente , Neurogénesis , Fosforilación , Retroviridae/genética , Columna Vertebral/fisiología , Proteínas tau/metabolismo
8.
PLoS Comput Biol ; 9(1): e1002853, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300432

RESUMEN

Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression.


Asunto(s)
Encéfalo/fisiología , Miedo , Memoria , Red Nerviosa , Animales , Inmunohistoquímica , Ratones , Ratones Mutantes
9.
J Neurosci ; 32(35): 12051-65, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22933789

RESUMEN

Adult hippocampal neurogenesis is thought to be essential for learning and memory, and has been implicated in the pathogenesis of several disorders. Although recent studies have identified key factors regulating neuroprogenitor proliferation in the adult hippocampus, the mechanisms that control the migration and integration of adult-born neurons into circuits are largely unknown. Reelin is an extracellular matrix protein that is vital for neuronal development. Activation of the Reelin cascade leads to phosphorylation of Disabled-1, an adaptor protein required for Reelin signaling. Here we used transgenic mouse and retroviral reporters along with Reelin signaling gain-of-function and loss-of-function studies to show that the Reelin pathway regulates migration and dendritic development of adult-generated hippocampal neurons. Whereas overexpression of Reelin accelerated dendritic maturation, inactivation of the Reelin signaling pathway specifically in adult neuroprogenitor cells resulted in aberrant migration, decreased dendrite development, formation of ectopic dendrites in the hilus, and the establishment of aberrant circuits. Our findings support a cell-autonomous and critical role for the Reelin pathway in regulating dendritic development and the integration of adult-generated granule cells and point to this pathway as a key regulator of adult neurogenesis. Moreover, our data reveal a novel role of the Reelin cascade in adult brain function with potential implications for the pathogenesis of several neurological and psychiatric disorders.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/antagonistas & inhibidores , Proteínas de la Matriz Extracelular/antagonistas & inhibidores , Hipocampo/citología , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neurogénesis/genética , Transducción de Señal/genética , Factores de Edad , Envejecimiento/genética , Animales , Moléculas de Adhesión Celular Neuronal/fisiología , Línea Celular , Células Cultivadas , Proteínas de la Matriz Extracelular/fisiología , Silenciador del Gen/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/fisiología , Ratas , Ratas Sprague-Dawley , Proteína Reelina , Serina Endopeptidasas/fisiología
10.
J Neurosci ; 31(38): 13469-84, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21940440

RESUMEN

Deep brain stimulation (DBS) is an established therapeutic modality for the treatment of movement disorders and an emerging therapeutic approach for the treatment of disorders of mood and thought. For example, recently we have shown that DBS of the fornix may ameliorate cognitive decline associated with dementia. However, like other applications of DBS, the mechanisms mediating these clinical effects are unknown. As DBS modulates neurophysiological activity in targeted brain regions, DBS might influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters analogous to clinical high-frequency DBS, here we addressed this question in mice. We found that acute stimulation of the entorhinal cortex (EC) transiently promoted proliferation in the dentate gyrus (DG). Cells generated as a consequence of stimulation differentiated into neurons, survived for at least several weeks, and acquired normal dentate granule cell (DGC) morphology. Importantly, stimulation-induced promotion of neurogenesis was limited to the DG and not associated with changes in apoptotic cell death. Using immunohistochemical approaches, we found that, once sufficiently mature, these stimulation-induced neurons integrated into hippocampal circuits supporting water-maze memory. Finally, formation of water-maze memory was facilitated 6 weeks (but not 1 week) after bilateral stimulation of the EC. The delay-dependent nature of these effects matches the maturation-dependent integration of adult-generated DGCs into dentate circuits supporting water-maze memory. Furthermore, because the beneficial effects of EC stimulation were prevented by blocking neurogenesis, this suggests a causal relationship between stimulation-induced promotion of adult neurogenesis and enhanced spatial memory.


Asunto(s)
Estimulación Encefálica Profunda/psicología , Giro Dentado/fisiología , Corteza Entorrinal/fisiología , Memoria/fisiología , Neurogénesis/fisiología , Conducta Espacial/fisiología , Animales , Apoptosis/fisiología , Supervivencia Celular/fisiología , Estimulación Encefálica Profunda/métodos , Giro Dentado/citología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Neuronas/citología , Neuronas/fisiología , Factores de Tiempo
11.
J Neurosci ; 30(13): 4636-49, 2010 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-20357114

RESUMEN

Reelin, an extracellular protein essential for neural migration and lamination, is also expressed in the adult brain. To unravel the function of this protein in the adult forebrain, we generated transgenic mice that overexpress Reelin under the control of the CaMKIIalpha promoter. Overexpression of Reelin increased adult neurogenesis and impaired the migration and positioning of adult-generated neurons. In the hippocampus, the overexpression of Reelin resulted in an increase in synaptic contacts and hypertrophy of dendritic spines. Induction of long-term potentiation (LTP) in alert-behaving mice showed that Reelin overexpression evokes a dramatic increase in LTP responses. Hippocampal field EPSP during a classical conditioning paradigm was also increased in these mice. Our results indicate that Reelin levels in the adult brain regulate neurogenesis and migration, as well as the structural and functional properties of synapses. These observations suggest that Reelin controls developmental processes that remain active in the adult brain.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Espinas Dendríticas/ultraestructura , Proteínas de la Matriz Extracelular/fisiología , Potenciación a Largo Plazo , Proteínas del Tejido Nervioso/fisiología , Prosencéfalo/metabolismo , Serina Endopeptidasas/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Moléculas de Adhesión Celular Neuronal/genética , Movimiento Celular , Condicionamiento Clásico , Proteínas de la Matriz Extracelular/genética , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neurogénesis , Neuronas/fisiología , Neuronas/ultraestructura , Regiones Promotoras Genéticas , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/ultraestructura , Proteína Reelina , Serina Endopeptidasas/genética , Sinapsis/fisiología , Sinapsis/ultraestructura
12.
Hippocampus ; 21(12): 1348-62, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20824726

RESUMEN

In the hippocampus, the production of dentate granule cells (DGCs) persists into adulthood. As adult-generated neurons are thought to contribute to hippocampal memory processing, promoting adult neurogenesis therefore offers the potential for restoring mnemonic function in the aged or diseased brain. Within this regenerative context, one key issue is whether developmentally generated and adult-generated DGCs represent functionally equivalent or distinct neuronal populations. To address this, we labeled separate cohorts of developmentally generated and adult-generated DGCs and used immunohistochemical approaches to compare their integration into circuits supporting hippocampus-dependent memory in intact mice. First, in the water maze task, rates of integration of adult-generated DGCs were regulated by maturation, with maximal integration not occurring until DGCs were five or more weeks in age. Second, these rates of integration were equivalent for embryonically, postnatally, and adult-generated DGCs. Third, these findings generalized to another hippocampus-dependent task, contextual fear conditioning. Together, these experiments indicate that developmentally generated and adult-generated DGCs are integrated into hippocampal memory networks at similar rates, and suggest a functional equivalence between DGCs generated at different developmental stages.


Asunto(s)
Giro Dentado/citología , Memoria/fisiología , Red Nerviosa/fisiología , Neurogénesis , Neuronas/fisiología , Factores de Edad , Animales , Reacción de Prevención/fisiología , Condicionamiento Clásico , Convulsivantes/toxicidad , Cruzamientos Genéticos , Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/genética , Giro Dentado/crecimiento & desarrollo , Giro Dentado/patología , Estimulación Eléctrica , Corteza Entorrinal/fisiología , Miedo/fisiología , Genes fos/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/fisiología , Pentilenotetrazol/toxicidad , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
13.
Nat Neurosci ; 10(3): 355-62, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17277773

RESUMEN

Throughout adulthood, new neurons are continuously added to the dentate gyrus, a hippocampal subregion that is important in spatial learning. Whether these adult-generated granule cells become functionally integrated into memory networks is not known. We used immunohistochemical approaches to visualize the recruitment of new neurons into circuits supporting water maze memory in intact mice. We show that as new granule cells mature, they are increasingly likely to be incorporated into circuits supporting spatial memory. By the time the cells are 4 or more weeks of age, they are more likely than existing granule cells to be recruited into circuits supporting spatial memory. This preferential recruitment supports the idea that new neurons make a unique contribution to memory processing in the dentate gyrus.


Asunto(s)
Giro Dentado/citología , Memoria/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Percepción Espacial/fisiología , Factores de Edad , Animales , Conducta Animal , Bromodesoxiuridina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Recuento de Células/métodos , Inmunohistoquímica/métodos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/citología , Proteínas Oncogénicas v-fos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Factores de Tiempo
14.
Neurosci Biobehav Rev ; 128: 282-293, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34139249

RESUMEN

Serotonin is a critical neuromodulator involved in development and behavior. Its role in reward is however still debated. Here, we first review classical studies involving electrical stimulation protocols and pharmacological approaches. Contradictory results on the serotonergic' involvement in reward emerge from these studies. These differences might be ascribable to either the diversity of cellular types within the raphe nuclei or/and the specific projection pathways of serotonergic neurons. We continue to review more recent work, using optogenetic approaches to activate serotonergic cells in the Raphe to VTA pathway. From these studies, it appears that activation of this pathway can lead to reinforcement learning mediated through the excitation of dopaminergic neurons by serotonergic neurons co-transmitting glutamate. Finally, given the importance of serotonin during development on adult emotion, the effect of abnormal early-life levels of serotonin on the dopaminergic system will also be discussed. Understanding the interaction between the serotonergic and dopaminergic systems during development and adulthood is critical to gain insight into the specific facets of neuropsychiatric disorders.


Asunto(s)
Recompensa , Área Tegmental Ventral , Dopamina , Neuronas Dopaminérgicas , Serotonina
15.
Alcohol ; 97: 1-11, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34464696

RESUMEN

In animal models that mimic human third-trimester fetal development, ethanol causes substantial cellular apoptosis in the brain, but for most brain structures, the extent of permanent neuron loss that persists into adulthood is unknown. We injected ethanol into C57BL/6J mouse pups at postnatal day 7 (P7) to model human late-gestation ethanol toxicity, and then used stereological methods to investigate adult cell numbers in several subcortical neurotransmitter systems that project extensively in the forebrain to regulate arousal states. Ethanol treatment caused especially large reductions (34-42%) in the cholinergic cells of the basal forebrain, including cholinergic cells in the medial septal/vertical diagonal band nuclei (Ch1/Ch2) and in the horizontal diagonal band/substantia innominata/nucleus basalis nuclei (Ch3/Ch4). Cell loss was also present in non-cholinergic basal forebrain cells, as demonstrated by 34% reduction of parvalbumin-immunolabeled GABA cells and 25% reduction of total Nissl-stained neurons in the Ch1/Ch2 region. In contrast, cholinergic cells in the striatum were reduced only 12% by ethanol, and those of the brainstem pedunculopontine/lateral dorsal tegmental nuclei (Ch5/Ch6) were not significantly reduced. Similarly, ethanol did not significantly reduce dopamine cells of the ventral tegmental area/substantia nigra or serotonin cells in the dorsal raphe nucleus. Orexin (hypocretin) cells in the hypothalamus showed a modest reduction (14%). Our findings indicate that the basal forebrain is especially vulnerable to alcohol exposure in the late gestational period. Reduction of cholinergic and GABAergic projection neurons from the basal forebrain that regulate forebrain arousal may contribute to the behavioral and cognitive deficits associated with neonatal ethanol exposure.


Asunto(s)
Prosencéfalo Basal , Etanol , Animales , Recuento de Células , Colina O-Acetiltransferasa/metabolismo , Colinérgicos , Etanol/toxicidad , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo
16.
Neuron ; 107(3): 552-565.e10, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32502462

RESUMEN

The occurrence of dreaming during rapid eye movement (REM) sleep prompts interest in the role of REM sleep in hippocampal-dependent episodic memory. Within the mammalian hippocampus, the dentate gyrus (DG) has the unique characteristic of exhibiting neurogenesis persisting into adulthood. Despite their small numbers and sparse activity, adult-born neurons (ABNs) in the DG play critical roles in memory; however, their memory function during sleep is unknown. Here, we investigate whether young ABN activity contributes to memory consolidation during sleep using Ca2+ imaging in freely moving mice. We found that contextual fear learning recruits a population of young ABNs that are reactivated during subsequent REM sleep against a backdrop of overall reduced ABN activity. Optogenetic silencing of this sparse ABN activity during REM sleep alters the structural remodeling of spines on ABN dendrites and impairs memory consolidation. These findings provide a causal link between ABN activity during REM sleep and memory consolidation.


Asunto(s)
Condicionamiento Psicológico , Giro Dentado/fisiología , Consolidación de la Memoria/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Animales , Calcio/metabolismo , Giro Dentado/citología , Electroencefalografía , Electromiografía , Miedo , Hipocampo , Aprendizaje , Ratones , Neurogénesis , Optogenética , Ritmo Teta
17.
Learn Mem ; 15(5): 290-3, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18441286

RESUMEN

Previous studies have shown that medial prefrontal cortical regions, such as the anterior cingulate cortex (ACC), play a key role in the expression of remote spatial and contextual memory. To evaluate whether this role is conserved in hippocampal-independent tasks we trained mice in the conditioned taste aversion (CTA) paradigm. Lidocaine-induced inactivation of the ACC blocked the expression of CTA tested one month (remote), but not one day (recent), after conditioning with either a weak or strong unconditioned stimulus (US). These data suggest that the ACC may play a conserved role in remote memory, regardless of memory strength or content.


Asunto(s)
Reacción de Prevención , Condicionamiento Psicológico , Giro del Cíngulo/efectos de los fármacos , Memoria , Gusto , Anestésicos Locales/administración & dosificación , Anestésicos Locales/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Hipocampo/efectos de los fármacos , Lidocaína/administración & dosificación , Lidocaína/farmacología , Ratones
18.
Brain Struct Funct ; 224(2): 961-971, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30506279

RESUMEN

A growing body of evidence shows that olfactory information is processed within a thalamic nucleus in both rodents and humans. The mediodorsal thalamic nucleus (MDT) receives projections from olfactory cortical areas including the piriform cortex (PCX) and is interconnected with the orbitofrontal cortex (OFC). Using electrophysiology in freely moving rats, we recently demonstrated the representation of olfactory information in the MDT and the dynamics of functional connectivity between the PCX, MDT and OFC. Notably, PCX-MDT coupling is specifically increased during odor sampling of an odor discrimination task. However, whether this increase of coupling is functionally relevant is unknown. To decipher the importance of PCX-MDT coupling during the sampling period, we used optogenetics to specifically inactivate the PCX inputs to MDT during an odor discrimination task and its reversal in rats. We demonstrate that inactivating the PCX inputs to MDT does not affect the performance accuracy of an odor discrimination task and its reversal, however, it does impact the rats' sampling duration. Indeed, rats in which PCX inputs to MDT were inactivated during the sampling period display longer sampling duration during the odor reversal learning compared to controls-an effect not observed when inactivating OFC inputs to MDT. We demonstrate a causal link between the PCX inputs to MDT and the odor sampling performance, highlighting the importance of this specific cortico-thalamic pathway in olfaction.


Asunto(s)
Odorantes , Corteza Olfatoria/fisiología , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Aprendizaje Inverso/fisiología , Tálamo/fisiología , Animales , Aprendizaje Discriminativo/fisiología , Masculino , Ratas , Ratas Long-Evans
19.
eNeuro ; 5(4)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30073196

RESUMEN

A developing brain shows intense reorganization and heightened neuronal plasticity allowing for environmental modulation of its development. During early life, maternal care is a key factor of this environment and defects in this care can derail adaptive brain development and may result in susceptibility to neuropsychiatric disorders. Nevertheless, the mechanisms by which those maternal interactions immediately impact the offspring's brain activity to initiate the pathway to pathology are not well understood. We do know that multiple neurotransmitter systems are involved, including the serotonergic system, a key neuromodulator involved in brain development and emotional regulation. We tested the importance of the serotonergic system and pups' immediate neural response to maternal presence using wireless electrophysiological recordings, a novel approach allowing us to record neural activity during pups' interactions with their mother. We found that maternal contact modulates the P10-P12 rat pups' anterior cingulate cortex (ACC) activity by notably increasing local-field potential (LFP) power in low-frequency bands. We demonstrated, by blocking serotonergic receptors, that this increase is mediated through 5-HT2 receptors (5-HT2Rs). Finally, we showed in isolated pups that enhancing serotonergic transmission, using a selective-serotonin-reuptake-inhibitor, is sufficient to enhance LFP power in low-frequency bands in a pattern similar to that observed when the mother is in the nest. Our results highlight a significant contribution of the serotonergic system in mediating changes of cortical activity in pups related to maternal presence.


Asunto(s)
Conducta Animal/fisiología , Electroencefalografía/métodos , Giro del Cíngulo/fisiología , Conducta Materna/fisiología , Potenciales de la Membrana/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Receptores de Serotonina 5-HT2/metabolismo , Serotonina/metabolismo , Transducción de Señal/fisiología , Animales , Ondas Encefálicas/fisiología , Femenino , Giro del Cíngulo/metabolismo , Masculino , Corteza Prefrontal/metabolismo , Ratas , Ratas Long-Evans , Serotoninérgicos/farmacología
20.
Front Behav Neurosci ; 12: 114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29928194

RESUMEN

Serotonin (5-HT) is one of the best-studied modulatory neurotransmitters with ubiquitous presynaptic release and postsynaptic reception. 5-HT has been implicated in a wide variety of brain functions, ranging from autonomic regulation, sensory perception, feeding and motor function to emotional regulation and cognition. The role of this neuromodulator in neuropsychiatric diseases is unquestionable with important neuropsychiatric medications, e.g., most antidepressants, targeting this system. Importantly, 5-HT modulates neurodevelopment and changes in its levels during development can have life-long consequences. In this mini-review, we highlight that exposure to both low and high serotonin levels during the perinatal period can lead to behavioral deficits in adulthood. We focus on three exogenous factors that can change 5-HT levels during the critical perinatal period: dietary tryptophan depletion, exposure to serotonin-selective-reuptake-inhibitors (SSRIs) and poor early life care. We discuss the effects of each of these on behavioral deficits in adulthood.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA