Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Pharmacol Toxicol ; 16: 24, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26392267

RESUMEN

BACKGROUND: Phosphatidylserine-containing liposomes (PSL) have been shown to reduce inflammation in experimental models of acute arthritis, by mimicking the apoptotic process. The aim of this study was to evaluate the effect of pegylated PSL (PEG-PSL) on chronic inflammation of collagen induced arthritis (CIA) in DBA/1J mice. METHODS: CIA was induced in 24 DBA/1J mice (n = 6/group), which were divided into control (0.9 % saline) or treated with PEG-PSL (5, 10 and 15 mg/kg/day, subcutaneously for 20 days). Clinical score, limb histology and measurement of cytokines in knee joints of animals by ELISA and cytometric bead array (CBA) were evaluated. The in vitro study employed macrophage cultures stimulated with 100 ng/ml of LPS plus 10 ng/ml of PMA and treated with 100 µM PEG-PSL. RESULTS: Resolution of the disease in vivo and the inflammatory process in vitro were not observed. PEG-PSL, in doses of 10 and 15 mg/kg, were not shown to reduce the score of the disease in animals, whereas with the dose of 5 mg/kg, the animals did not show the advanced stage of the disease when compared to the controls. The PEG- PSL 5, 10 and 15 mg/kg treatment groups did not show significant reduction of TNF-α, IL-1ß, IL-6, IL-2 and IFN-γ when compared to the controls. Disease incidence and animal weights were not affected by treatment. Regarding the paw histology, PEG-PSL did not yield any reductions in the infiltrating mononuclear, synovial hyperplasia, extension of pannus formation, synovial fibrosis, erosion of cartilage, bone erosion or cartilage degradation. The concentration of 100 µM of PEG-PSL has not been shown to reduce inflammation induced by LPS/PMA in the in vitro study. Treated groups did not show any reduction in inflammatory cytokines in the knee joints of animals affected by the disease compared to the control, although there were higher concentrations of TGF-ß1 in all experimental groups. CONCLUSION: The experimental model showed an expression of severe arthritis after the booster. TGF-ß1 as well other pro inflammatory cytokines were presented in high concentrations in all groups. PEG-PSL had no impact on the clinical score, the histopathology from tibial-tarsal joints or the production of cytokines in the knee joints. Other alternatives such as dosage, route of administration, and as an adjunct to a drug already on the market, should be evaluated to support the use of PEG-PSL as a new therapeutic tool in inflammatory diseases.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Fosfatidilserinas/farmacología , Polietilenglicoles/farmacología , Animales , Artritis Experimental/metabolismo , Células Cultivadas , Enfermedad Crónica , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Mediadores de Inflamación/metabolismo , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Lipopolisacáridos , Liposomas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos DBA , Fosfatidilserinas/administración & dosificación , Polietilenglicoles/administración & dosificación , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
2.
J Cachexia Sarcopenia Muscle ; 4(3): 231-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23389765

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is an inflammatory autoimmune disease of unknown etiology, affecting mainly the joint but also other tissues. RA patients usually present weakness and muscle atrophy, nonarticular manifestations of the disease. Although causing great impact, the understanding of muscle atrophy, its development, and the mechanisms involved is still very limited. The objective of this study is to evaluate the development of muscle atrophy in skeletal muscle of a murine model of arthritis. METHODS: The experimental murine model of collagen-induced arthritis (CIA) was used. DBA/1J mice were randomly divided into three groups: control (CO, n = 25), sham arthritis (SA, n = 25), and arthritis (CIA, n = 28), analyzed in different time points: 25, 35, and 45 days after the induction of arthritis. The arthritis development was followed by clinical scores and hind paw edema three times a week. The spontaneous exploratory locomotion and weight were evaluated weekly. In all time points, serum was collected before the death of the animals for cytokine analysis, and myofiber cross-sectional areas (CSA) of gastrocnemius (GA) and tibialis anterior (TA) skeletal muscles were evaluated. RESULTS: The clinical parameters of arthritis progressively increased in CIA in all experimental times, demonstrating the greatest difference from other groups at 45 days after induction (clinical score: CO, 00 ± 00; SA, 1.00 ± 0.14; CIA, 3.28 ± 0.41 p > 0.05). The CIA animals had lower weights during all the experimentation periods with a difference of 6 % from CO at 45 days (p > 0.05). CIA animals also demonstrated progressive decrease in distance walked, with a reduction of 54 % in 35 and 74 % at 45 days. Cytokine analysis identified significant increase in IL-6 serum levels in CIA than CO and SA in all experimental times. CSA of the myofiber of GA and TA was decreased 26 and 31 % (p > 0.05) in CIA in 45 days after the induction of disease, respectively. There was significant and inverse correlation between the disease clinical score and myofiber CSA in 45 days (GA: r = -0.71; p = 0.021). CONCLUSION: Our results point to a progressive development of muscle wasting, with premature onset arthritis. These observations are relevant to understand the development of muscle loss, as well as for the design of future studies trying to understand the mechanisms involved in muscle wasting. As far as we are concerned, this is the first study to evaluate the relation between disease score and muscle atrophy in a model of arthritis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA