Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Parasitology ; 150(10): 866-882, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37519240

RESUMEN

Many organisms live in fragmented populations, which has profound consequences on the dynamics of associated parasites. Metapopulation theory offers a canonical framework for predicting the effects of fragmentation on spatiotemporal host­parasite dynamics. However, empirical studies of parasites in classical metapopulations remain rare, particularly for vector-borne parasites. Here, we quantify spatiotemporal patterns and possible drivers of infection probability for several ectoparasites (fleas, Ixodes trianguliceps and Ixodes ricinus) and vector-borne microparasites (Babesia microti, Bartonella spp., Hepatozoon spp.) in a classically functioning metapopulation of water vole hosts. Results suggest that the relative importance of vector or host dynamics on microparasite infection probabilities is related to parasite life-histories. Bartonella, a microparasite with a fast life-history, was positively associated with both host and vector abundances at several spatial and temporal scales. In contrast, B. microti, a tick-borne parasite with a slow life-history, was only associated with vector dynamics. Further, we provide evidence that life-history shaped parasite dynamics, including occupancy and colonization rates, in the metapopulation. Lastly, our findings were consistent with the hypothesis that landscape connectivity was determined by distance-based dispersal of the focal hosts. We provide essential empirical evidence that contributes to the development of a comprehensive theory of metapopulation processes of vector-borne parasites.


Asunto(s)
Bartonella , Infestaciones por Pulgas , Ixodes , Siphonaptera , Animales
3.
Parasitology ; 146(14): 1707-1713, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31554531

RESUMEN

In developing countries, estimates of the prevalence and diversity of Leptospira infections in livestock, an important but neglected zoonotic pathogen and cause of livestock productivity loss, are lacking. In Madagascar, abattoir sampling of cattle and pigs demonstrated a prevalence of infection of 20% in cattle and 5% in pigs by real-time PCR. In cattle, amplification and sequencing of the Leptospira-specific lfb1 gene revealed novel genotypes, mixed infections of two or more Leptospira species and evidence for potential transmission between small mammals and cattle. Sequencing of the secY gene demonstrated genetic similarities between Leptospira detected in Madagascar and, as yet, uncultured Leptospira strains identified in Tanzania, Reunion and Brazil. Detection of Leptospira DNA in the same animal was more likely in urine samples or pooled samples from four kidney lobes relative to samples collected from a single kidney lobe, suggesting an effect of sampling method on detection. In pigs, no molecular typing of positive samples was possible. Further research into the epidemiology of livestock leptospirosis in developing countries is needed to inform efforts to reduce human infections and to improve livestock productivity.


Asunto(s)
Coinfección/veterinaria , Reservorios de Enfermedades/microbiología , Leptospirosis/veterinaria , Ganado/microbiología , Mataderos , África/epidemiología , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/microbiología , Coinfección/epidemiología , Coinfección/microbiología , Países en Desarrollo , Genotipo , Leptospira/genética , Leptospirosis/diagnóstico , Leptospirosis/epidemiología , Madagascar/epidemiología , Filogenia , Prevalencia , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/microbiología , Zoonosis/epidemiología , Zoonosis/microbiología
4.
Emerg Infect Dis ; 24(6): 1138-1140, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29774844

RESUMEN

We identified mixed infections of pathogenic Leptospira in small mammals across a landscape-scale study area in Madagascar by using primers targeting different Leptospira spp. Using targeted primers increased prevalence estimates and evidence for transmission between endemic and invasive hosts. Future studies should assess rodentborne transmission of Leptospira to humans.


Asunto(s)
Coinfección , Reservorios de Enfermedades/virología , Leptospira , Leptospirosis/epidemiología , Leptospirosis/microbiología , Animales , Historia del Siglo XXI , Humanos , Leptospira/clasificación , Leptospira/genética , Leptospirosis/historia , Leptospirosis/transmisión , Madagascar/epidemiología , Ratones , Prevalencia , Vigilancia en Salud Pública , Ratas
5.
Virol J ; 15(1): 83, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743115

RESUMEN

BACKGROUND: Hantavirus infection is a zoonotic disease that is associated with hemorrhagic fever with renal syndrome and cardiopulmonary syndrome in human. Anjozorobe virus, a representative virus of Thailand orthohantavirus (THAIV), was recently discovered from rodents in Anjozorobe-Angavo forest in Madagascar. To assess the circulation of hantavirus at the national level, we carried out a survey of small terrestrial mammals from representative regions of the island and identified environmental factors associated with hantavirus infection. As we were ultimately interested in the potential for human exposure, we focused our research in the peridomestic area. METHODS: Sampling was achieved in twenty districts of Madagascar, with a rural and urban zone in each district. Animals were trapped from a range of habitats and examined for hantavirus RNA by nested RT-PCR. We also investigated the relationship between hantavirus infection probability in rats and possible risk factors by using Generalized Linear Mixed Models. RESULTS: Overall, 1242 specimens from seven species were collected (Rattus rattus, Rattus norvegicus, Mus musculus, Suncus murinus, Setifer setosus, Tenrec ecaudatus, Hemicentetes semispinosus). Overall, 12.4% (111/897) of Rattus rattus and 1.6% (2/125) of Mus musculus were tested positive for THAIV. Rats captured within houses were less likely to be infected than rats captured in other habitats, whilst rats from sites characterized by high precipitation and relatively low seasonality were more likely to be infected than those from other areas. Older animals were more likely to be infected, with infection probability showing a strong increase with weight. CONCLUSIONS: We report widespread distribution of THAIV in the peridomestic rats of Madagascar, with highest prevalence for those living in humid areas. Although the potential risk of infection to human may also be widespread, our results provide a first indication of specific zone with high transmission. Gathered data will be helpful to implement policies for control and prevention of human risk infection.


Asunto(s)
Animales Salvajes/virología , Reservorios de Enfermedades/virología , Eulipotyphla/virología , Infecciones por Hantavirus/veterinaria , Orthohantavirus/genética , Enfermedades de los Roedores/epidemiología , Factores de Edad , Animales , Peso Corporal , Monitoreo Epidemiológico , Femenino , Orthohantavirus/clasificación , Orthohantavirus/aislamiento & purificación , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/transmisión , Infecciones por Hantavirus/virología , Humanos , Humedad , Madagascar/epidemiología , Masculino , Ratones , Filogenia , Filogeografía , Ratas , Factores de Riesgo , Enfermedades de los Roedores/transmisión , Enfermedades de los Roedores/virología
6.
Integr Zool ; 19(1): 66-86, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37431721

RESUMEN

The black rat (Rattus rattus) poses a severe threat to food security and public health in Madagascar, where it is a major cause of pre- and post-harvest crop losses and an important reservoir for many zoonotic diseases, including plague. Elsewhere, ecologically based rodent management (EBRM) strategies have been developed using ecological information to inform decisions on where and when to target control. EBRM could deliver improved health and well-being outcomes in Madagascar if adapted to the local ecological context. Using data collected from removal studies, we explored spatio-temporal patterns in the breeding activity of the black rat (R. rattus) in domestic and agricultural habitats across Madagascar and investigated to what extent these trends are influenced by rainfall and rat density. We identified clear spatio-temporal variation in the seasonality of R. rattus reproduction. Reproduction was highly seasonal both inside and outside of houses, but seasonal trends varied between these two habitats. Seasonal trends were explained, in part, by variation in rainfall; however, the effect of rainfall on reproductive rates did itself vary by season and habitat type. A decline in breeding intensity with increasing rat density was recorded outside of houses. This has important implications for control, as populations may compensate for removal through increased reproduction. We recommend that sustained control initiated before the main breeding season, combined with improved hygiene and adequate rodent-proofing in homes and grain stores, could curtail population growth and reduce pre- and post-harvest losses provided that these measures overcome the compensatory response of rodent populations.


Asunto(s)
Peste , Enfermedades de los Roedores , Animales , Ratas , Madagascar , Zoonosis
7.
Mol Biol Rep ; 39(2): 1205-15, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21603855

RESUMEN

Quantitative descriptions of population genetic structure allows the delineation of population units and is therefore of primary importance in population management and wildlife conservation. Yet, predicting factors that influence the gene flow patterns in populations particularly at landscape scales remains a major challenge in evolutionary biology. Here we report a population genetic study of the common dormouse, Muscardinus avellanarius, a species that is seriously threatened due to anthropogenic factors, in two regions, Bontuchel (Denbighshire) and Afonwen (Gwynedd), both in Wales, UK. Ten microsatellite loci were used to characterize patterns of genetic diversity of M. avellanarius within both regions. While the population differentiation between both regions is apparent through geographical scale separating them, by using Bayesian clustering analyses, we identified the occurrence of genetic division among populations of M. avellanarius in Bontuchel region, but no significant evidence of differentiation in Afonwen. We found a strong significant isolation-by-distance (IBD) pattern at a fine-scale (less than 1 km) within continuous habitat and between habitat patches in both regions. Overall, analyses suggest that small-scale dispersal associated with the social structure and dispersal tendencies of this species is reflected in the genetic structure of populations. These findings then provide useful baseline data for supporting local management strategies.


Asunto(s)
Ecosistema , Especies en Peligro de Extinción , Flujo Génico/genética , Variación Genética , Genética de Población , Roedores/genética , Animales , Teorema de Bayes , Análisis por Conglomerados , Conservación de los Recursos Naturales/métodos , Demografía , Efecto Fundador , Genotipo , Repeticiones de Microsatélite/genética , Modelos Genéticos , Dinámica Poblacional , Gales
8.
Proc Natl Acad Sci U S A ; 106(19): 7905-9, 2009 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-19416827

RESUMEN

A key aim in epidemiology is to understand how pathogens spread within their host populations. Central to this is an elucidation of a pathogen's transmission dynamics. Mathematical models have generally assumed that either contact rate between hosts is linearly related to host density (density-dependent) or that contact rate is independent of density (frequency-dependent), but attempts to confirm either these or alternative transmission functions have been rare. Here, we fit infection equations to 6 years of data on cowpox virus infection (a zoonotic pathogen) for 4 natural populations to investigate which of these transmission functions is best supported by the data. We utilize a simple reformulation of the traditional transmission equations that greatly aids the estimation of the relationship between density and host contact rate. Our results provide support for an infection rate that is a saturating function of host density. Moreover, we find strong support for seasonality in both the transmission coefficient and the relationship between host contact rate and host density, probably reflecting seasonal variations in social behavior and/or host susceptibility to infection. We find, too, that the identification of an appropriate loss term is a key component in inferring the transmission mechanism. Our study illustrates how time series data of the host-pathogen dynamics, especially of the number of susceptible individuals, can greatly facilitate the fitting of mechanistic disease models.


Asunto(s)
Viruela Vacuna/transmisión , Viruela Vacuna/virología , Interacciones Huésped-Patógeno , Enfermedades de los Animales/transmisión , Animales , Arvicolinae , Brotes de Enfermedades , Epidemiología , Predisposición Genética a la Enfermedad , Modelos Teóricos , Método de Montecarlo , Densidad de Población , Dinámica Poblacional , Estaciones del Año , Especificidad de la Especie
9.
J Anim Ecol ; 80(1): 19-38, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20735792

RESUMEN

1. We review our ecological understanding of wildlife infectious diseases from the individual host to the ecosystem scale, highlighting where conceptual thinking lacks verification, discussing difficulties and challenges, and offering potential future research directions. 2. New molecular approaches hold potential to increase our understanding of parasite interactions within hosts. Also, advances in our knowledge of immune systems makes immunological parameters viable measures of parasite exposure, and useful tools for improving our understanding of causal mechanisms. 3. Studies of transmission dynamics have revealed the importance of heterogeneity in host behaviour and physiology, and of contact processes operating at different spatial and temporal scales. An important future challenge is to determine the key transmission mechanisms maintaining the persistence of different types of diseases in the wild. 4. Regulation of host populations is too complex to consider parasite effects in isolation from other factors. One solution is to seek a unified understanding of the conditions under which (and the ecological rules determining when) population scale impacts of parasites can occur. 5. Good evidence now shows that both direct effects of parasites, and trait mediated indirect effects, frequently mediate the success of invasive species and their impacts on recipient communities. A wider exploration of these effects is now needed. 6. At the ecosystem scale, research is needed to characterize the circumstances and conditions under which both fluxes in parasite biomass, and trait mediated effects, are significant in ecosystem processes, and to demonstrate that parasites do indeed increase 'ecosystem health'. 7. There is a general need for more empirical testing of predictions and subsequent development of theory in the classic research cycle. Experimental field studies, meta-analyses, the collection and analysis of long-term data sets, and data constrained modelling, will all be key to advancing our understanding. 8. Finally, we are only now beginning to understand the importance of cross-scale interactions associated with parasitism. Such interactions may offer key insights into bigger picture questions such as when and how different regulatory factors are important, when disease can cause species extinctions, and what characteristics are indicative of functionally resilient ecosystems.


Asunto(s)
Enfermedades de los Animales/parasitología , Animales Salvajes , Enfermedades Parasitarias en Animales/parasitología , Animales , Interacciones Huésped-Parásitos , Parásitos/fisiología , Dinámica Poblacional
10.
Integr Zool ; 16(6): 886-892, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33733592

RESUMEN

The epidemiology of Yersinia pestis, the causative agent of plague, involves vectors and reservoirs in its transmission cycle. The passive plague surveillance in Madagascar targets mainly rodent and fleas. However, carnivores are routinely surveyed as sentinels of local plague activity in some countries. The aim of this study is to assess the use of domestic dog (Canis familiaris) as sentinel animal for field surveillance of plague in a highly endemic area in Madagascar. Cross-sectional surveys of plague antibody prevalence in C. familiaris were conducted in endemic areas with contrasting histories of plague cases in humans, as well as a plague free area. Rodent capture was done in parallel to evaluate evidence for Y. pestis circulation in the primary reservoirs. In 2 sites, dogs were later re-sampled to examine evidence of seroconversion and antibody persistence. Biological samplings were performed between March 2008 and February 2009. Plague antibody detection was assessed using anti-F1 ELISA. Our study showed a significant difference in dog prevalence rates between plague-endemic and plague-free areas, with no seropositive dogs detected in the plague free area. No correlation was found between rodents and dog prevalence rates, with an absence of seropositive rodents in some area where plague circulation was indicated by seropositive dogs. This is consistent with high mortality rates in rodents following infection. Re-sampling dogs identified individuals seropositive on both occasions, indicating high rates of re-exposure and/or persistence of plague antibodies for at least 9 months. Seroconversion or seropositive juvenile dogs indicated recent local plague circulation. In Madagascar, dog surveillance for plague antibody could be useful to identify plague circulation in new areas or quiescent areas within endemic zones. Within active endemic areas, monitoring of dog populations for seroconversion (negative to positive) or seropositive juvenile dogs could be useful for identifying areas at greatest risk of human outbreaks.


Asunto(s)
Enfermedades de los Perros/epidemiología , Enfermedades Endémicas , Peste/veterinaria , Especies Centinela , Vigilancia de Guardia , Animales , Anticuerpos Antibacterianos/sangre , Zoonosis Bacterianas/prevención & control , Brotes de Enfermedades/prevención & control , Enfermedades de los Perros/sangre , Perros , Humanos , Madagascar/epidemiología , Peste/epidemiología , Peste/microbiología , Prevalencia
11.
Integr Zool ; 16(6): 868-885, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33694282

RESUMEN

Rodents represent a serious threat to food security and public health. The extent to which rodent control can mitigate the risk from rodent-borne disease depends on both the effectiveness of control in reducing rodent abundance and the impact on disease epidemiology. Focusing on a plague-endemic region of Madagascar, this study compared the effectiveness of 3 methods: live-traps, snap-traps, and rodenticides. Control interventions were implemented inside houses between May and October 2019. Tracking tiles monitored rodent abundance. Rodent fleas, the vector involved in plague transmission, were collected. Rodent populations consisted of Rattus rattus and Mus musculus. In terms of trap success, we found that our live-trap regime was more effective than snap-traps. While all 3 control strategies appeared to reduce in-house rodent activity in the short term, we found no evidence of a longer-term effect, with in-house rodent abundance in treated sites comparable to non-treatment sites by the following month. Endemic flea, Synopsyllus fonquerniei, is a key plague vector usually found on rats living outdoors. Although we found no evidence that its abundance inside houses increased following control, this may have been due to a lack of power caused by significant variation in S. fonquerniei abundance. The presence of S. fonquerniei in houses was more likely when S. fonquerniei abundance on outdoor rats was higher, which in turn correlated with high rat abundance. Our results emphasize that control strategies need to consider this connectivity between in-house rat-flea populations and the outdoor populations, and any potential consequences for plague transmission.


Asunto(s)
Peste/prevención & control , Control de Roedores/métodos , Siphonaptera/microbiología , Animales , Zoonosis Bacterianas/prevención & control , Insectos Vectores , Madagascar , Peste/epidemiología , Densidad de Población , Ratas
12.
Oecologia ; 162(3): 653-61, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19916066

RESUMEN

Rodents that have multi-annual cycles of density are known to have flexible growth strategies, and the "Chitty effect", whereby adults in the high-density phase of the cycle exhibit larger average body mass than during the low phase, is a well-documented feature of cyclic populations. Despite this, there have been no studies that have repeatedly monitored individual vole growth over time from all phases of a density cycle, in order to evaluate whether such variation in body size is due to differences in juvenile growth rates, differences in growth periods, or differential survival of particularly large or small voles. This study compares growth trajectories from voles during the peak, increase and crash phases of the cycle in order to evaluate whether voles are exhibiting fast or slow growth strategies. We found that although voles reach highest asymptotic weights in the peak phase and lowest asymptotes during the crash, initial growth rates were not significantly different. This suggests that voles attain larger body size during the peak phase as a result of growing for longer.


Asunto(s)
Arvicolinae/crecimiento & desarrollo , Animales , Femenino , Masculino , Dinámica Poblacional
13.
Parasit Vectors ; 13(1): 570, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176846

RESUMEN

BACKGROUND: Rattus spp. are frequently implicated as key reservoir hosts for leptospirosis, one of the most common, but neglected, bacterial zoonoses in the world. Although leptospirosis is predicted to be a significant public health threat in Africa, studies from the continent are limited. METHODS: Rattus spp. (n = 171) were sampled (January-May 2016) across the City of Johannesburg, South Africa's largest inland metropole. Rattus spp. genetic diversity was evaluated by full length (1140 bp) cyt b sequencing of 42 samples. For comparison, a further 12 Rattus norvegicus samples collected in Cape Town, South Africa's largest coastal metropole, were also genotyped. Leptospira infections were identified and genotyped using real-time PCR and multi-locus (lfb1, secY and lipL41) DNA sequencing. RESULTS: Five R. norvegicus haplotypes were identified across Johannesburg, four of which have not previously been detected in South Africa, and one in Cape Town. Across Johannesburg we identified a Leptospira spp. infection prevalence of 44% (75/171) and noted significant differences in the prevalence between administrative regions within the metropole. Multi-locus sequence analyses identified a clonal genotype consistent with L. borgpetersenii serogroup Javanica (serovar Ceylonica). DISCUSSION: The prevalence of infection identified in this study is amongst the highest detected in Rattus spp. in similar contexts across Africa. Despite the complex invasion history suggested by the heterogeneity in R. norvegicus haplotypes identified in Johannesburg, a single L. borgpetersenii genotype was identified in all infected rodents. The lack of L. interrogans in a rodent community dominated by R. norvegicus is notable, given the widely recognised host-pathogen association between these species and evidence for L. interrogans infection in R. norvegicus in Cape Town. It is likely that environmental conditions (cold, dry winters) in Johannesburg may limit the transmission of L. interrogans. Spatial heterogeneity in prevalence suggest that local factors, such as land use, influence disease risk in the metropole. CONCLUSIONS: In South Africa, as in other African countries, leptospirosis is likely underdiagnosed. The high prevalence of infection in urban rodents in Johannesburg suggest that further work is urgently needed to understand the potential public health risk posed by this neglected zoonotic pathogen.


Asunto(s)
Leptospira/genética , Leptospirosis/microbiología , Enfermedades de los Roedores/microbiología , Animales , Ciudades/epidemiología , Reservorios de Enfermedades/microbiología , Genotipo , Haplotipos , Humanos , Leptospira/clasificación , Leptospirosis/epidemiología , Tipificación de Secuencias Multilocus , Prevalencia , Ratas/clasificación , Ratas/genética , Enfermedades de los Roedores/epidemiología , Análisis de Secuencia de ADN , Serogrupo , Sudáfrica/epidemiología , Zoonosis/epidemiología , Zoonosis/microbiología
14.
PLoS Negl Trop Dis ; 14(8): e0008251, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32853251

RESUMEN

Yersinia pestis, the bacterial causative agent of plague, remains an important threat to human health. Plague is a rodent-borne disease that has historically shown an outstanding ability to colonize and persist across different species, habitats, and environments while provoking sporadic cases, outbreaks, and deadly global epidemics among humans. Between September and November 2017, an outbreak of urban pneumonic plague was declared in Madagascar, which refocused the attention of the scientific community on this ancient human scourge. Given recent trends and plague's resilience to control in the wild, its high fatality rate in humans without early treatment, and its capacity to disrupt social and healthcare systems, human plague should be considered as a neglected threat. A workshop was held in Paris in July 2018 to review current knowledge about plague and to identify the scientific research priorities to eradicate plague as a human threat. It was concluded that an urgent commitment is needed to develop and fund a strong research agenda aiming to fill the current knowledge gaps structured around 4 main axes: (i) an improved understanding of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii) human and societal responses; (iii) improved diagnostic tools and case management; and (iv) vaccine development. These axes should be cross-cutting, translational, and focused on delivering context-specific strategies. Results of this research should feed a global control and prevention strategy within a "One Health" approach.


Asunto(s)
Enfermedades Desatendidas/prevención & control , Peste/prevención & control , Yersinia pestis , Animales , Brotes de Enfermedades/prevención & control , Reservorios de Enfermedades/microbiología , Humanos , Insectos Vectores , Madagascar/epidemiología , Enfermedades Desatendidas/epidemiología , Peste/epidemiología , Peste/transmisión , Roedores , Siphonaptera
15.
Proc Biol Sci ; 276(1662): 1603-10, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19203924

RESUMEN

The seasonality of recurrent epidemics has been largely neglected, especially where patterns are not driven by forces external to the population. Here, we use data on cowpox virus in field voles to explore the seasonal patterns in wildlife (variable abundance) populations and compare these with patterns previously found in humans. Timing in our system was associated with both the number and the rate of recruitment of susceptible hosts. A plentiful and sustained supply of susceptible hosts throughout the summer gave rise to a steady rise in infected hosts and a late peak. A meagre supply more limited in time was often insufficient to sustain an increase in infected hosts, leading to an early peak followed by a decline. These seasonal patterns differed from those found in humans, but the underlying association found between the timing and the supply of susceptible hosts was similar to that in humans. We also combine our data with a model to explore these differences between humans and wildlife. Model results emphasize the importance of the interplay between seasonal infection and recruitment and suggest that our empirical patterns have a relevance extending beyond our own system.


Asunto(s)
Arvicolinae/virología , Virus de la Viruela Vacuna/fisiología , Viruela Vacuna/veterinaria , Brotes de Enfermedades/veterinaria , Estaciones del Año , Animales , Viruela Vacuna/epidemiología
16.
Viruses ; 11(8)2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390747

RESUMEN

Genetic variants of Thailand orthohantavirus (THAIV) have been recently reported from rodents in South-East Asia and in islands from the South-West part of the Indian Ocean. In order to detect THAIV and its variants, we developed a sensitive and specific real-time RT-PCR targeting the S segment. Our assay was developed in two different RT-PCR systems that gave similar results in terms of sensitivity. Moreover, our results demonstrated a specificity of 100%.


Asunto(s)
Infecciones por Hantavirus/diagnóstico , Orthohantavirus/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Virología/métodos , Animales , Orthohantavirus/genética , Infecciones por Hantavirus/virología , ARN Viral/genética , Ratas , Sensibilidad y Especificidad , Proteínas Virales/genética
17.
Proc Biol Sci ; 275(1644): 1753-9, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18448414

RESUMEN

Pathogens may be important for host population dynamics, as they can be a proximate cause of morbidity and mortality. Infection dynamics, in turn, may be dependent on the underlying condition of hosts. There is a clear potential for synergy between infection and condition: poor condition predisposes to host infections, which further reduce condition and so on. To provide empirical data that support this notion, we measured haematological indicators of infection (neutrophils and monocytes) and condition (red blood cells (RBCs) and lymphocytes) in field voles from three populations sampled monthly for 2 years. Mixed-effect models were developed to evaluate two hypotheses, (i) that individuals with low lymphocyte and/or RBC levels are more prone to show elevated haematological indicators of infection when re-sampled four weeks later, and (ii) that a decline in indicators of condition is likely to follow the development of monocytosis or neutrophilia. We found that individuals with low RBC and lymphocyte counts had increased probabilities of developing monocytosis and higher increments in neutrophils, and that high indices of infection (neutrophilia and monocytosis) were generally followed by a declining tendency in the indicators of condition (RBCs and lymphocytes). The vicious circle that these results describe suggests that while pathogens overall may be more important in wildlife dynamics than has previously been appreciated, specific pathogens are likely to play their part as elements of an interactive web rather than independent entities.


Asunto(s)
Arvicolinae , Interacciones Huésped-Patógeno , Infecciones/epidemiología , Enfermedades de los Roedores/epidemiología , Animales , Ecología , Recuento de Eritrocitos/veterinaria , Femenino , Infecciones/sangre , Estudios Longitudinales , Recuento de Linfocitos/veterinaria , Masculino , Dinámica Poblacional , Enfermedades de los Roedores/sangre , Estaciones del Año
18.
J Anim Ecol ; 77(5): 984-97, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18564292

RESUMEN

1. Pathogens have been proposed as potentially important drivers of population dynamics, but while a few studies have investigated the impact of specific pathogens, the wealth of information provided by general indices of health has hardly been exploited. By evaluating haematological parameters in wild populations, our knowledge of the dynamics of health and infection may be better understood. 2. Here, haematological dynamics in natural populations of field voles are investigated to determine environmental and host factors associated with indicators of inflammatory response (counts of monocytes and neutrophils) and of condition: measures of immunological investment (lymphocyte counts) and aerobic capacity (red blood cell counts). 3. Individuals from three field vole populations were sampled monthly for 2 years. Comparisons with individuals kept under controlled conditions facilitated interpretation of field data. Mixed effects models were developed for each cell type to evaluate separately the effects of various factors on post-juvenile voles and mature breeding females. 4. There were three well-characterized 'physiological' seasons. The immunological investment appeared lowest in winter (lowest lymphocyte counts), but red blood cells were at their highest levels and indices of inflammatory response at their lowest. Spring was characterized by a fall in red blood cell counts and peaks in indicators of inflammatory response. During the course of summer-autumn, red blood cell counts recovered, the immunological investment increased and the indicators of inflammatory response decreased. 5. Poor body condition appeared to affect the inflammatory response (lower neutrophil and monocyte peaks) and the immunological investment (lower lymphocyte counts), providing evidence that the capacity to fight infection is dependent upon host condition. 6. Breeding early in the year was most likely in females in better condition (high lymphocyte and red blood cell counts). 7. All the haematological parameters were affected adversely by high population densities.


Asunto(s)
Arvicolinae/sangre , Arvicolinae/fisiología , Animales , Animales Salvajes/fisiología , Recuento de Eritrocitos , Femenino , Recuento de Linfocitos , Masculino , Monocitos , Neutrófilos , Reproducción/fisiología , Estaciones del Año
19.
J Anim Ecol ; 77(1): 110-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18177331

RESUMEN

1. Cowpox virus is an endemic virus circulating in populations of wild rodents. It has been implicated as a potential cause of population cycles in field voles Microtus agrestis L., in Britain, owing to a delayed density-dependent pattern in prevalence, but its impact on field vole demographic parameters is unknown. This study tests the hypothesis that wild field voles infected with cowpox virus have a lower probability of survival than uninfected individuals. 2. The effect of cowpox virus infection on the probability of an individual surviving to the next month was investigated using longitudinal data collected over 2 years from four grassland sites in Kielder Forest, UK. This effect was also investigated at the population level, by examining whether infection prevalence explained temporal variation in survival rates, once other factors influencing survival had been controlled for. 3. Individuals with a probability of infection, P(I), of 1 at a time when base survival rate was at median levels had a 22.4% lower estimated probability of survival than uninfected individuals, whereas those with a P(I) of 0.5 had a 10.4% lower survival. 4. At the population level, survival rates also decreased with increasing cowpox prevalence, with lower survival rates in months of higher cowpox prevalence. 5. Simple matrix projection models with 28 day time steps and two stages, with 71% of voles experiencing cowpox infection in their second month of life (the average observed seroprevalence at the end of the breeding season) predict a reduction in 28-day population growth rate during the breeding season from lambda = 1.62 to 1.53 for populations with no cowpox infection compared with infected populations. 6. This negative correlation between cowpox virus infection and field vole survival, with its potentially significant effect on population growth rate, is the first for an endemic pathogen in a cyclic population of wild rodents.


Asunto(s)
Arvicolinae/virología , Virus de la Viruela Vacuna/patogenicidad , Viruela Vacuna/veterinaria , Enfermedades de los Roedores/mortalidad , Animales , Viruela Vacuna/epidemiología , Viruela Vacuna/mortalidad , Viruela Vacuna/virología , Femenino , Estudios Longitudinales , Masculino , Prevalencia , Probabilidad , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/virología , Análisis de Supervivencia , Factores de Tiempo
20.
J Anim Ecol ; 77(2): 378-89, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18005128

RESUMEN

1. Recent studies of rodent populations have demonstrated that certain parasites can cause juveniles to delay maturation until the next reproductive season. Furthermore, a variety of parasites may share the same host, and evidence is beginning to accumulate showing nonindependent effects of different infections. 2. We investigated the consequences for host population dynamics of a disease-induced period of no reproduction, and a chronic reduction in fecundity following recovery from infection (such as may be induced by secondary infections) using a modified SIR (susceptible, infected, recovered) model. We also included a seasonally varying birth rate as recent studies have demonstrated that seasonally varying parameters can have important effects on long-term host-parasite dynamics. We investigated the model predictions using parameters derived from five different cyclic rodent populations. 3. Delayed and reduced fecundity following recovery from infection have no effect on the ability of the disease to regulate the host population in the model as they have no effect on the basic reproductive rate. However, these factors can influence the long-term dynamics including whether or not they exhibit multiyear cycles. 4. The model predicts disease-induced multiyear cycles for a wide range of realistic parameter values. Host populations that recover relatively slowly following a disease-induced population crash are more likely to show multiyear cycles. Diseases for which the period of infection is brief, but full recovery of reproductive function is relatively slow, could generate large amplitude multiyear cycles of several years in length. Chronically reduced fecundity following recovery can also induce multiyear cycles, in support of previous theoretical studies. 5. When parameterized for cowpox virus in the cyclic field vole populations (Microtus agrestis) of Kielder Forest (northern England), the model predicts that the disease must chronically reduce host fecundity by more than 70%, following recovery from infection, for it to induce multiyear cycles. When the model predicts quasi-periodic multiyear cycles it also predicts that seroprevalence and the effective date of onset of the reproductive season are delayed density-dependent, two phenomena that have been recorded in the field.


Asunto(s)
Arvicolinae/fisiología , Ambiente , Modelos Biológicos , Reproducción/fisiología , Enfermedades de los Roedores/fisiopatología , Roedores/fisiología , Animales , Arvicolinae/parasitología , Femenino , Interacciones Huésped-Parásitos , Masculino , Densidad de Población , Dinámica Poblacional , Crecimiento Demográfico , Roedores/parasitología , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA