Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Osteoporos Rep ; 13(1): 41-51, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25431159

RESUMEN

Synovial joint morphogenesis occurs through the condensation of mesenchymal cells into a non-cartilaginous region known as the interzone and the specification of progenitor cells that commit to the articular fate. Although several signaling molecules are expressed by the interzone, the mechanism is poorly understood. For treatments of cartilage injuries, it is critical to discover the presence of joint progenitor cells in adult tissues and their expression gene pattern. Potential stem cell niches have been found in different joint regions, such as the surface zone of articular cartilage, synovium, and groove of Ranvier. Inherited joint malformations as well as joint-degenerating conditions are often associated with other skeletal defects and may be seen as the failure of morphogenic factors to establish the correct microenvironment in cartilage and bone. Therefore, exploring how joints form can help us understand how cartilage and bone are damaged and develop drugs to reactivate this developing mechanism.


Asunto(s)
Homeostasis/fisiología , Articulaciones/embriología , Articulaciones/fisiología , Organogénesis/fisiología , Humanos , Morfogénesis/fisiología
2.
Biomater Res ; 23: 11, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131112

RESUMEN

BACKGROUND: Tendons play an important role in transferring stress between muscles and bones and in maintaining the stability of joints. Tendon tears are difficult to heal and are associated with high recurrence rates. So, the objective of this study was to develop a biodegradable scaffold for tendon-bone junction regeneration. METHODS: Two types of polylactic acid (PLA) yarns, having fibers with round and four deep grooved cross-sections, were braided into tubular scaffolds and cultured with murine Transforming growth factor beta type II receptor (Tgfbr2)-expressing joint progenitor cells. The scaffolds were designed to mimic the mechanical, immuno-chemical and biological properties of natural mouse tendon-bone junctions. Three different tubular scaffolds measuring 2 mm in diameter were braided on a Steeger 16-spindle braiding machine and biological and mechanical performance of the three scaffolds were evaluated. RESULTS: The mechanical test results indicated that three different braided scaffold structures provided a wide range of mechanical properties that mimic the components of tendon bone junction and results of the biological tests confirmed cell viability, active cell attachment and proliferation throughout all three scaffolds. CONCLUSIONS: This study has identified that the three proposed types of braided scaffolds with some improvement in their structures have the potential to be used as scaffolds for the regeneration of a tendon bone tissue junction.

3.
J Bone Miner Res ; 30(11): 2014-27, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25967044

RESUMEN

The cellular and humoral responses that orchestrate fracture healing are still elusive. Here we report that bone morphogenic protein 2 (BMP2)-dependent fracture healing occurs through a tight control of chemokine C-X-C motif-ligand-12 (CXCL12) cellular, spatial, and temporal expression. We found that the fracture repair process elicited an early site-specific response of CXCL12(+)-BMP2(+) endosteal cells and osteocytes that was not present in unfractured bones and gradually decreased as healing progressed. Absence of a full complement of BMP2 in mesenchyme osteoprogenitors (BMP2(cKO/+)) prevented healing and led to a dysregulated temporal and cellular upregulation of CXCL12 expression associated with a deranged angiogenic response. Healing was rescued when BMP2(cKO/+) mice were systemically treated with AMD3100, an antagonist of CXCR4 and agonist for CXCR7 both receptors for CXCL12. We further found that mesenchymal stromal cells (MSCs), capable of delivering BMP2 at the endosteal site, restored fracture healing when transplanted into BMP2(cKO/+) mice by rectifying the CXCL12 expression pattern. Our in vitro studies showed that in isolated endosteal cells, BMP2, while inducing osteoblastic differentiation, stimulated expression of pericyte markers that was coupled with a decrease in CXCL12. Furthermore, in isolated BMP2(cKO/cKO) endosteal cells, high expression levels of CXCL12 inhibited osteoblastic differentiation that was restored by AMD3100 treatment or coculture with BMP2-expressing MSCs that led to an upregulation of pericyte markers while decreasing platelet endothelial cell adhesion molecule (PECAM). Taken together, our studies show that following fracture, a CXCL12(+)-BMP2(+) perivascular cell population is recruited along the endosteum, then a timely increase of BMP2 leads to downregulation of CXCL12 that is essential to determine the fate of the CXCL12(+)-BMP2(+) to osteogenesis while departing their supportive role to angiogenesis. Our findings have far-reaching implications for understanding mechanisms regulating the selective recruitment of distinct cells into the repairing niches and the development of novel pharmacological (by targeting BMP2/CXCL12) and cellular (MSCs, endosteal cells) interventions to promote fracture healing.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Quimiocina CXCL12/metabolismo , Curación de Fractura , Animales , Separación Celular , Fracturas Óseas/metabolismo , Fracturas Óseas/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Factores de Tiempo
4.
Stem Cells Dev ; 22(9): 1342-59, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23231014

RESUMEN

TGF-ß type II receptor (Tgfbr2) signaling plays an essential role in joint-element development. The Tgfbr2(PRX-1KO) mouse, in which the Tgfbr2 is conditionally inactivated in developing limbs, lacks interphalangeal joints and tendons. In this study, we used the Tgfbr2-ß-Gal-GFP-BAC mouse as a LacZ/green fluorescent protein (GFP)-based read-out to determine: the spatial and temporally regulated expression pattern of Tgfbr2-expressing cells within joint elements; their expression profile; and their slow-cycling labeling with bromodeoxyuridine (BrdU). Tgfbr2-ß-Gal activity was first detected at embryonic day (E) 13.5 within the interphalangeal joint interzone. By E16.5, and throughout adulthood, Tgfbr2-expressing cells clustered in a contiguous niche that comprises the groove of Ranvier and the synovio-entheseal complex including part of the perichondrium, the synovium, the articular cartilage superficial layer, and the tendon's entheses. Tgfbr2-expressing cells were found in the synovio-entheseal complex niche with similar temporal pattern in the knee, where they were also detected in meniscal surface, ligaments, and the synovial lining of the infrapatellar fat pad. Tgfbr2-ß-Gal-positive cells were positive for phospho-Smad2, signifying that the Tgfbr2 reporter was accurate. Developmental-stage studies showed that Tgfbr2 expression was in synchrony with expression of joint-morphogenic genes such as Noggin, GDF5, Notch1, and Jagged1. Prenatal and postnatal BrdU-incorporation studies showed that within this synovio-entheseal-articular-cartilage niche most of the Tgfbr2-expressing cells labeled as slow-proliferating cells, namely, stem/progenitor cells. Tgfbr2-positive cells, isolated from embryonic limb mesenchyme, expressed joint progenitor markers in a time- and TGF-ß-dependent manner. Our studies provide evidence that joint Tgfbr2-expressing cells have anatomical, ontogenic, slow-cycling trait and in-vivo and ex-vivo expression profiles of progenitor joint cells.


Asunto(s)
Articulaciones del Pie/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Cartílago Articular/metabolismo , Proliferación Celular , Células Cultivadas , Femenino , Articulaciones del Pie/citología , Miembro Anterior/citología , Miembro Anterior/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Nicho de Células Madre , Células Madre/metabolismo , Membrana Sinovial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA