Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nano Lett ; 24(13): 3922-3929, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506481

RESUMEN

Tunable thin-film coating-based reflective color displays have versatile applications including image sensors, camouflage devices, spatial light modulators, and intelligent windows. However, generating high-purity colors using such coatings have posed a challenge. Here, we reveal high-purity color generation using an ultralow-loss phase change material (Sb2S3)-based tunable aperiodic distributed Bragg reflector (A-DBR). By strategically adjusting the periodicity of the adjacent layers of A-DBRs, we realize a narrow photonic bandgap with high reflectivity to generate high-purity orange and yellow colors. In particular, we demonstrate an A-DBR with a large photonic bandgap tunability by changing the structural phase of Sb2S3 layers from amorphous to crystalline. Moreover, we experimentally tailor multistate tunable colors through external optical stimuli. Unlike conventional nano thin-film coatings, our proposed approach offers an irradiance-free, narrowband, and highly reflective color band, achieving exceptional color purity by effectively suppressing reflections in off-color bands.

2.
Chem Rev ; 122(19): 15450-15500, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35894820

RESUMEN

Phase transitions can occur in certain materials such as transition metal oxides (TMOs) and chalcogenides when there is a change in external conditions such as temperature and pressure. Along with phase transitions in these phase change materials (PCMs) come dramatic contrasts in various physical properties, which can be engineered to manipulate electrons, photons, polaritons, and phonons at the nanoscale, offering new opportunities for reconfigurable, active nanodevices. In this review, we particularly discuss phase-transition-enabled active nanotechnologies in nonvolatile electrical memory, tunable metamaterials, and metasurfaces for manipulation of both free-space photons and in-plane polaritons, and multifunctional emissivity control in the infrared (IR) spectrum. The fundamentals of PCMs are first introduced to explain the origins and principles of phase transitions. Thereafter, we discuss multiphysical nanodevices for electronic, photonic, and thermal management, attesting to the broad applications and exciting promises of PCMs. Emerging trends and valuable applications in all-optical neuromorphic devices, thermal data storage, and encryption are outlined in the end.

3.
Nano Lett ; 23(11): 5236-5241, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37200154

RESUMEN

Thin film coatings with tunable colors have a broad range of applications, from solid-state reflective displays to steganography. Here, we propose a novel approach to chalcogenide phase change material (PCM)-incorporated steganographic nano-optical coatings (SNOC) as thin film color reflectors for optical steganography. The proposed SNOC design combines a broad-band and a narrow-band absorber made up of PCMs to achieve tunable optical Fano resonance in the visible wavelength, which is a scalable platform for accessing the full-color range. We demonstrate that the line width of the Fano resonance can be dynamically tuned by switching the structural phase of PCM from amorphous to crystalline, which is crucial for obtaining high-purity colors. For steganography applications, the cavity layer of SNOC is divided into an ultralow loss PCM and a high index dielectric material with identical optical thickness. We show that electrically tunable color pixels can be fabricated using the SNOC on a microheater device.

4.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112431

RESUMEN

Surface crack detection and sizing is essential for the manufacturing and maintenance of engines, run parts, and other metal elements of aircrafts. Among various non-destructive detection methods, the fully non-contact and non-intrusive technique based on laser-stimulated lock-in thermography (LLT) has recently attracted a lot of attention from the aerospace industry. We propose and demonstrate a system of reconfigurable LLT for three-dimensional surface crack detection in metal alloys. For large area inspection, the multi-spot LLT can speed up the inspection time by a factor of the number of spots. The minimum resolved size of micro-holes is ~50 µm in diameter limited by the magnification of the camera lens. We also study the crack length ranging from 0.8 to 3.4 mm by varying the modulation frequency of LLT. An empirical parameter related to the thermal diffusion length is found to show the linear dependence with the crack length. With the proper calibration, this parameter can be used to predict the sizing of the surface fatigue cracks. Reconfigurable LLT allows us to quickly locate the crack position and accurately measure its dimensions. This method is also applicable to the non-destructive detection of surface or sub-surface defect in other materials used in various industries.

5.
Small ; 18(28): e2202005, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35714298

RESUMEN

Realizing perfect light absorption in stacked thin films of dielectrics and metals through critical light coupling has recently received intensive research attention. In addition, realizing ultra-thin perfect absorber and tunable perfect absorber in the visible spectrum is essential for novel optoelectronics applications. However, the existing thin film stacks cannot show tunable perfect absorption in a wide-angle range. Here, a tunable perfect absorption from normal incidence to a wide-angle range (0° to 70°) by utilizing a two-layer stack consisting of a high refractive index low-loss dielectric on a high reflecting metal is proposed. This is experimentally demonstrated by depositing a thin layer of low-loss phase change material such as stibnite (Sb2 S3 ) on a thin layer of silver. This structure shows tunable perfect absorption with large spectral tunability in the visible wavelength. Furthermore, the absorption enhancement in 2D materials by transferring monolayer molybdenum disulfide on the stack, which shows 96% light absorption with enhanced photoluminescence, is demonstrated. In addition, the thin film stack can work as a scalable phase modulator offering a maximum phase tunability of ≈140° by changing the structural state of Sb2 S3 from amorphous to crystalline.

6.
Nat Mater ; 20(2): 181-187, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33106649

RESUMEN

Two-dimensional superconductor (2DSC) monolayers with non-centrosymmetry exhibit unconventional Ising pair superconductivity and an enhanced upper critical field beyond the Pauli paramagnetic limit, driving intense research interest. However, they are often susceptible to structural disorder and environmental oxidation, which destroy electronic coherence and provide technical challenges in the creation of artificial van der Waals heterostructures (vdWHs) for devices. Herein, we report a general and scalable synthesis of highly crystalline 2DSC monolayers via a mild electrochemical exfoliation method using flexible organic ammonium cations solvated with neutral solvent molecules as co-intercalants. Using NbSe2 as a model system, we achieved a high yield (>75%) of large-sized single-crystal monolayers up to 300 µm. The as-fabricated, twisted NbSe2 vdWHs demonstrate high stability, good interfacial properties and a critical current that is modulated by magnetic field when one flux quantum fits to an integer number of moiré cells. Additionally, formulated 2DSC inks can be exploited to fabricate wafer-scale 2D superconducting wire arrays and three-dimensional superconducting composites with desirable morphologies.

7.
Chem Soc Rev ; 50(10): 5898-5951, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34027954

RESUMEN

Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either "top-down" lithographic or "bottom-up" self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.

8.
Nano Lett ; 20(11): 7964-7972, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33054225

RESUMEN

Optical wavefront engineering has been rapidly developing in fundamentals from phase accumulation in the optical path to the electromagnetic resonances of confined nanomodes in optical metasurfaces. However, the amplitude modulation of light has limited approaches that usually originate from the ohmic loss and absorptive dissipation of materials. Here, an atomically thin photon-sieve platform made of MoS2 multilayers is demonstrated for high-quality optical nanodevices, assisted fundamentally by strong excitonic resonances at the band-nesting region of MoS2. The atomic thin MoS2 significantly facilitates high transmission of the sieved photons and high-fidelity nanofabrication. A proof-of-concept two-dimensional (2D) nanosieve hologram exhibits 10-fold enhanced efficiency compared with its non-2D counterparts. Furthermore, a supercritical 2D lens with its focal spot breaking diffraction limit is developed to exhibit experimentally far-field label-free aberrationless imaging with a resolution of ∼0.44λ at λ = 450 nm in air. This transition-metal-dichalcogenide (TMDC) photonic platform opens new opportunities toward future 2D meta-optics and nanophotonics.

9.
Opt Express ; 28(16): 23509-23522, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752346

RESUMEN

Optical metasurface based refractive index (RI) sensors find applications in chemical, environmental, biomedical, and food processing industries. The existing RI sensors based on metals suffer from the plasmonic loss in the optical regime; in contrast, those based on Fano-type resonances generated by dielectric materials are either polarization-sensitive or are based on complex geometrical structures prone to fabrication imperfections that can lead to severe performance degradation. Here, we demonstrate that careful engineering of resonance modes in dielectric metasurfaces based on simple symmetric meta-atoms can overcome these limitations. More specifically, we have designed low-loss high-performance RI sensors using all-dielectric metasurfaces composed of TiO2 based nanostructures of three different shapes (i.e., cylindrical, square and elliptical) operating at near-infrared (NIR) wavelengths, which are robust against the perturbations of geometric parameters. In terms of physics, this work reports sensor structures achieving sharp resonant dips of high Q-factor in the transmission spectra corresponding to multiple dielectric resonance modes (i.e., electric quadrupole, magnetic dipole, and electric dipole) with superior performance as compared to the state-of-the-art. Four absolute liquids (water, ethanol, pentanol, and carbon tetrachloride) with a refractive index ranging from 1.333 to 1.453 are used to numerically validate the performance, and a maximum sensitivity of 798 nm/RIU with FOM up to 732 has been achieved.

10.
Opt Lett ; 45(4): 852-855, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32058487

RESUMEN

In this Letter, a novel, to the best of our knowledge, structural configuration on a transparent microsphere is proposed to engineer the focusing light field. By patterning a hybrid diffractive Fresnel zone plate structure on a partially milled microsphere using a focused ion beam, wavelength-dependent switching between mono-focal and multi-focal functionalities can be achieved. Generation of on-axis tri-foci and mono-focus light fields under high numerical-aperture (${\rm NA}\gt {0.67}$NA>0.67) conditions at two working wavelengths (405 nm and 808 nm) have been demonstrated both numerically and experimentally.

11.
Chemistry ; 26(60): 13606-13610, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32452589

RESUMEN

The grafting of imidazole species onto coordinatively unsaturated sites within metal-organic framework MIL-101(Cr) enables enhanced CO2 capture in close proximity to catalytic sites. The subsequent combination of CO2 and epoxide binding sites, as shown through theoretical findings, significantly improves the rate of cyclic carbonate formation, producing a highly active CO2 utilization catalyst. An array of spectroscopic investigations, in combination with theoretical calculations reveal the nature of the active sites and associated catalytic mechanism which validates the careful design of the hybrid MIL-101(Cr).

12.
Phys Chem Chem Phys ; 22(6): 3604-3610, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31995069

RESUMEN

Plasmonic chirality has attracted more and more attention recently due to the enhanced chiroptical response and its potential applications in biosensing. Plasmonic Fano resonance arises from the interference between a dark narrow resonance and a bright broad resonance, and it provides a new paradigm to control the plasmon mode interactions. Even though a strong circular dichroism (CD) effect has been predicted in chiral nanostructures with a Fano resonance, there are few experimental studies, and the correlation between the two effects is unclear. In this research, we investigate these two effects in plasmonic heterodimer nanorods in the same spectral range. We find that the heterodimer nanostructure exhibits a Fano-like resonance and Fano-like chiroptical response, both of which are correlated with the coupling between a super-radiant electric dipole and a sub-radiant magnetic dipole mode. Due to the interference nature of the Fano resonance, the Fano-like chiroptical response exhibits distinctively sharp features in a narrow spectral range. This Fano-like chiroptical response can be explained by a modified chiral molecule theory and a simplified coupled electric-magnetic dipole model. This research may provide new insight into the physics picture of plasmonic chirality and paves the way for the development of sensitive plasmonic sensors.

13.
Angew Chem Int Ed Engl ; 59(21): 8270-8276, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32003098

RESUMEN

Ligand-induced surface restructuring with heteroatomic doping is used to precisely modify the surface of a prototypical [Au25 (SR1 )18 ]- cluster (1) while maintaining its icosahedral Au13 core for the synthesis of a new bimetallic [Au19 Cd3 (SR2 )18 ]- cluster (2). Single-crystal X-ray diffraction studies reveal that six bidentate Au2 (SR1 )3 motifs (L2) attached to the Au13 core of 1 were replaced by three quadridentate Au2 Cd(SR2 )6 motifs (L4) to create a bimetallic cluster 2. Experimental and theoretical results demonstrate a stronger electronic interaction between the surface motifs (Au2 Cd(SR2 )6 ) and the Au13 core, attributed to a more compact cluster structure and a larger energy gap of 2 compared to that of 1. These factors dramatically enhance the photoluminescence quantum efficiency and lifetime of crystal of the cluster 2. This work provides a new route for the design of a wide range of bimetallic/alloy metal nanoclusters with superior optoelectronic properties and functionality.

14.
Opt Lett ; 44(14): 3418-3421, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31305537

RESUMEN

Ultraviolet (UV) light with high-energy photons is widely used in various areas such as nano-lithography, biology, and photoemission spectroscopy. The flexible control over its amplitude and phase is a longstanding problem due to the strong absorption from most materials. Here, we propose a nano-aperture platform to control the amplitude and phase of UV light and experimentally demonstrate amplitude- and phase-type holograms at a wavelength of 355 nm. In principle, nano-apertures etched on a metal film can be filled in vacuum, so that the material issue about optical absorption is not involved in this configuration, allowing us to manipulate UV light through the geometry of nano-apertures even when plasmonic resonances are absent. A binary-amplitude nanosieve is used to reconstruct three holographic images at different cut-planes by tuning the constructive interference elaborately. Meanwhile, rectangular nano-apertures are employed to demonstrate UV holograms with geometric phase that is controlled by the orientation of the nano-apertures. This platform could be extended to other UV regions.

15.
Opt Lett ; 43(1): 34-37, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29328190

RESUMEN

Vortex beam carrying orbital angular momentum (OAM) attracts much attention in many research fields for its special phase and intensity distributions. In this Letter, a novel design called the spiral phase microsphere (SPMS) is proposed for the first time, to the best of our knowledge, which can convert incident plane wave light into the focused vortex beam that carries OAM with different topological charges l=±1 and ±2. The vortex beam generation is verified by a self-interfered modification of the SPMS. The generation of the vortex beams by the SPMS irradiated by a single-wavelength incident light is studied using the CST MICROWAVE STUDIO simulation. The SPMS provides a new approach to achieve high-efficiency and high-integrated photonic applications related with OAM.

16.
Opt Lett ; 43(22): 5615-5618, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30439908

RESUMEN

We report the development of, to the best of our knowledge, a novel supercritical focusing coherent anti-Stokes Raman scattering (SCF-CARS) microscopy for high-resolution vibrational imaging. Two optimized phase patterns with a combination of concentric rings with an alternative 0 and π phase are generated by using a spatial light modulator and applied to the pump beam for minimizing its focal spot size. One of the phase patterns is for both the lateral and axial resolution enhancement, and the other can further improve the lateral resolution, but it sacrifices the axial resolution to some extent. We demonstrate this high-resolution SCF-CARS microscopy technique by imaging the polymethyl methacrylate (PMMA) nano-cylinder on a microscope slide and glass-air interface, as well as biomedical samples, for example, tooth.

17.
Appl Opt ; 57(14): 3639-3644, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29791325

RESUMEN

We propose, to the best of our knowledge, a new configuration of a biosensor based on the graphene-MoS2 hybrid structure by adopting the lower refractive index MgF2 prism in order to improve the sensitivity and the figure of merit (FOM). We can obtain an ultrasensitive sensor with values of sensitivity and FOM as high as 540.8°/RIU and 145/RIU, respectively, by modulating the parameters in the configuration and comparatively choosing a different absentee layer material. The proposed structure is applicable in the realization of an integrated device for the surface plasmon resonance biosensor.

18.
Opt Lett ; 41(6): 1197-200, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26977668

RESUMEN

Complex refractive index sensing is proposed and experimentally demonstrated in optofluidic sensors based on silicon photonic crystal nanobeam cavities. The sensitivities are 58 and 139 nm/RIU, respectively, for the real part (n) and the imaginary part (κ) of the complex refractive index, and the corresponding detection limits are 1.8×10(-5) RIU for n and 4.1×10(-6) RIU for κ. Moreover, the capability of the complex refractive index sensing method to detect the concentration composition of the ternary mixture is demonstrated without the surface immobilization of functional groups, which is impossible to realize with the conventional refractive index sensing scheme.

19.
Nanotechnology ; 26(25): 255201, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26041560

RESUMEN

Branchlike nano-electrode structures were found to improve the THz emission intensity of a photomixer by approximately one order of magnitude higher than that of a photomixer with one row of nano-electrodes separated by the same 100 nm gap. The enhancement is attributed to a more efficient collection of generated carriers, which is in turn due to a more intense electric field under the branchlike nano-electrodes' structures. This is coupled with an increased number of effective areas where strong tip-to-tip THz field enhancements were observed. The optical-to-THz conversion efficiency of the photomixers with the new branchlike nano-electrodes was found to be 10 times higher. The more efficient THz photomixer will greatly benefit the development of continuous-wave THz imaging and spectroscopy systems.

20.
Opt Express ; 22(21): 25599-607, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25401593

RESUMEN

The Surface Plasmon Polariton (SPP) planar waveguide with amorphous silicon (α-Si) cladding is studied, for empowering the device modulation response. The device is fabricated with multiple quantum wells (MQWs) as the gain media electrically pumped for compensating SPP propagation loss on Au film waveguide. The SPP propagation greatly benefits from the modal gain for the long-range hybrid mode, which is optimized by adopting an α-Si cladding layer accompanied with minimal degradation of mode confinement. The proposed structure presented more sensitive response to electrical manipulation than the one without cladding in experiment.


Asunto(s)
Simulación por Computador , Luz , Refractometría/instrumentación , Dispersión de Radiación , Silicio/química , Diseño de Equipo , Resonancia por Plasmón de Superficie/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA