Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 32(2): 1562-1575, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297705

RESUMEN

We investigate the properties of a soft glass dual-core photonic crystal fiber for application in multicore waveguiding with balanced gain and loss. Its base material is a phosphate glass in a P2O5-Al2O3-Yb2O3-BaO-ZnO-MgO-Na2O oxide system. The separated gain and loss cores are realized with two cores with ytterbium and copper doping of the base phosphate glass. The ytterbium-doped core supports a laser (gain) activity under excitation with a pump at 1000 nm wavelength, while the CuO-doped is responsible for strong attenuation at the same wavelength. We establish conditions for an exact balance between gain and loss and investigate pulse propagation by solving a system of coupled generalized nonlinear Schrödinger equations. We predict two states of light under excitation with hyperbolic secant pulses centered at 1000 nm: 1) linear oscillation of the pulse energy between gain and loss core (P T-symmetry state), with strong power attenuation; 2) retention of the pulse in the excited gain core (broken P T-symmetry), with very modest attenuation. The optimal pulse energy levels were identified to be 100 pJ (first state) and 430 pJ (second state).

2.
Opt Lett ; 49(1): 149-152, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134174

RESUMEN

We systematically present experimental and theoretical results for the dual-wavelength switching of 1560 nm, 75 fs signal pulses (SPs) driven by 1030 nm, and 270 fs control pulses (CPs) in a dual-core fiber (DCF). We demonstrate a switching contrast of 31.9 dB, corresponding to a propagation distance of 14 mm, achieved by launching temporally synchronized SP-CP pairs into the fast core of the DCF with moderate inter-core asymmetry. Our analysis employs a system of three coupled propagation equations to identify the compensation of the asymmetry by nonlinearity as the physical mechanism behind the efficient switching performance.

3.
Opt Lett ; 45(18): 5221-5224, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932495

RESUMEN

We experimentally investigate a nonlinear switching mechanism in a dual-core highly nonlinear optical fiber. We focus the input stream of femtosecond pulses on one core only, to identify transitions between inter-core oscillations, self-trapping in the cross core, and self-trapping of the pulse in the straight core. A model based on the system of coupled nonlinear Schrödinger equations provides surprisingly good agreement with the experimental findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA