Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Heart J ; 39(20): 1835-1847, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29420830

RESUMEN

Aims: We have shown that extracellular vesicles (EVs) secreted by embryonic stem cell-derived cardiovascular progenitor cells (Pg) recapitulate the therapeutic effects of their parent cells in a mouse model of chronic heart failure (CHF). Our objectives are to investigate whether EV released by more readily available cell sources are therapeutic, whether their effectiveness is influenced by the differentiation state of the secreting cell, and through which mechanisms they act. Methods and results: The total EV secreted by human induced pluripotent stem cell-derived cardiovascular progenitors (iPSC-Pg) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) were isolated by ultracentrifugation and characterized by Nanoparticle Tracking Analysis, western blot, and cryo-electron microscopy. In vitro bioactivity assays were used to evaluate their cellular effects. Cell and EV microRNA (miRNA) content were assessed by miRNA array. Myocardial infarction was induced in 199 nude mice. Three weeks later, mice with left ventricular ejection fraction (LVEF) ≤ 45% received transcutaneous echo-guided injections of iPSC-CM (1.4 × 106, n = 19), iPSC-Pg (1.4 × 106, n = 17), total EV secreted by 1.4 × 106 iPSC-Pg (n = 19), or phosphate-buffered saline (control, n = 17) into the peri-infarct myocardium. Seven weeks later, hearts were evaluated by echocardiography, histology, and gene expression profiling, blinded to treatment group. In vitro, EV were internalized by target cells, increased cell survival, cell proliferation, and endothelial cell migration in a dose-dependent manner and stimulated tube formation. Extracellular vesicles were rich in miRNAs and most of the 16 highly abundant, evolutionarily conserved miRNAs are associated with tissue-repair pathways. In vivo, EV outperformed cell injections, significantly improving cardiac function through decreased left ventricular volumes (left ventricular end systolic volume: -11%, P < 0.001; left ventricular end diastolic volume: -4%, P = 0.002), and increased LVEF (+14%, P < 0.0001) relative to baseline values. Gene profiling revealed that EV-treated hearts were enriched for tissue reparative pathways. Conclusion: Extracellular vesicles secreted by iPSC-Pg are effective in the treatment of CHF, possibly, in part, through their specific miRNA signature and the associated stimulation of distinct cardioprotective pathways. The processing and regulatory advantages of EV could make them effective substitutes for cell transplantation.


Asunto(s)
Vesículas Extracelulares/trasplante , Insuficiencia Cardíaca/terapia , Animales , Proliferación Celular , Supervivencia Celular , Células Madre Embrionarias/ultraestructura , Vesículas Extracelulares/genética , Insuficiencia Cardíaca/patología , Humanos , Ratones Desnudos , MicroARNs/análisis , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocitos Cardíacos/ultraestructura , Células Madre Pluripotentes/ultraestructura , Resultado del Tratamiento
2.
Cells ; 10(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477551

RESUMEN

Age-related macular degeneration (AMD) is a blinding disease for which most of the patients remain untreatable. Since the disease affects the macula at the center of the retina, a structure specific to the primate lineage, rodent models to study the pathophysiology of AMD and to develop therapies are very limited. Consequently, our understanding relies mostly on genetic studies highlighting risk alleles at many loci. We are studying the possible implication of a metabolic imbalance associated with risk alleles within the SLC16A8 gene that encodes for a retinal pigment epithelium (RPE)-specific lactate transporter MCT3 and its consequences for vision. As a first approach, we report here the deficit in transepithelial lactate transport of a rare SLC16A8 allele identified during a genome-wide association study. We produced induced pluripotent stem cells (iPSCs) from the unique patient in our cohort that carries two copies of this allele. After in vitro differentiation of the iPSCs into RPE cells and their characterization, we demonstrate that the rare allele results in the retention of intron 2 of the SLC16A8 gene leading to the absence of MCT3 protein. We show using a biochemical assay that these cells have a deficit in transepithelial lactate transport.


Asunto(s)
Empalme Alternativo , Células Epiteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transporte Biológico Activo/genética , Células Epiteliales/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Transportadores de Ácidos Monocarboxílicos/genética , Epitelio Pigmentado de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA