RESUMEN
Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Neuroblastoma/genética , Neuroblastoma/patología , Recombinación Genética/genética , Telomerasa/genética , Telomerasa/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Cromatina/genética , Cromatina/metabolismo , Cromosomas Humanos Par 5/genética , ADN Helicasas/genética , Metilación de ADN , Elementos de Facilitación Genéticos/genética , Activación Enzimática/genética , Amplificación de Genes/genética , Silenciador del Gen , Humanos , Lactante , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/clasificación , Neuroblastoma/enzimología , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Pronóstico , ARN Mensajero/análisis , ARN Mensajero/genética , Riesgo , Translocación Genética/genética , Regulación hacia Arriba/genética , Proteína Nuclear Ligada al Cromosoma XRESUMEN
BACKGROUND: Next-generation sequencing technologies can produce tens of millions of reads, often paired-end, from transcripts or genomes. But few programs can align RNA on the genome and accurately discover introns, especially with long reads. We introduce Magic-BLAST, a new aligner based on ideas from the Magic pipeline. RESULTS: Magic-BLAST uses innovative techniques that include the optimization of a spliced alignment score and selective masking during seed selection. We evaluate the performance of Magic-BLAST to accurately map short or long sequences and its ability to discover introns on real RNA-seq data sets from PacBio, Roche and Illumina runs, and on six benchmarks, and compare it to other popular aligners. Additionally, we look at alignments of human idealized RefSeq mRNA sequences perfectly matching the genome. CONCLUSIONS: We show that Magic-BLAST is the best at intron discovery over a wide range of conditions and the best at mapping reads longer than 250 bases, from any platform. It is versatile and robust to high levels of mismatches or extreme base composition, and reasonably fast. It can align reads to a BLAST database or a FASTA file. It can accept a FASTQ file as input or automatically retrieve an accession from the SRA repository at the NCBI.
Asunto(s)
ARN/genética , Alineación de Secuencia , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Algoritmos , Secuencia de Bases , Bases de Datos de Ácidos Nucleicos , Humanos , Intrones/genética , Curva ROC , Factores de TiempoRESUMEN
Interleukin-21 (IL-21) is a pleiotropic cytokine that induces expression of transcription factor BLIMP1 (encoded by Prdm1), which regulates plasma cell differentiation and T cell homeostasis. We identified an IL-21 response element downstream of Prdm1 that binds the transcription factors STAT3 and IRF4, which are required for optimal Prdm1 expression. Genome-wide ChIP-Seq mapping of STAT3- and IRF4-binding sites showed that most regions with IL-21-induced STAT3 binding also bound IRF4 in vivo and furthermore revealed that the noncanonical TTCnnnTAA GAS motif critical in Prdm1 was broadly used for STAT3 binding. Comparing genome-wide expression array data to binding sites revealed that most IL-21-regulated genes were associated with combined STAT3-IRF4 sites rather than pure STAT3 sites. Correspondingly, ChIP-Seq analysis of Irf4(-/-) T cells showed greatly diminished STAT3 binding after IL-21 treatment, and Irf4(-/-) mice showed impaired IL-21-induced Tfh cell differentiation in vivo. These results reveal broad cooperative gene regulation by STAT3 and IRF4.
Asunto(s)
Regulación de la Expresión Génica , Factores Reguladores del Interferón/metabolismo , Interleucinas/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción/genética , Animales , Linfocitos B/inmunología , Secuencia de Bases , Sitios de Unión , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Estudio de Asociación del Genoma Completo , Factores Reguladores del Interferón/genética , Intrones , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Factor de Transcripción STAT3/genéticaRESUMEN
Background The trigeminal ganglion contains neurons that relay sensations of pain, touch, pressure, and many other somatosensory modalities to the central nervous system. The ganglion is also a reservoir for latent herpes virus 1 infection. To gain a better understanding of molecular factors contributing to migraine and headache, transcriptome analyses were performed on postmortem human trigeminal ganglia. Methods RNA-Seq measurements of gene expression were conducted on small sub-regions of 16 human trigeminal ganglia. The samples were also characterized for transcripts derived from viral and microbial genomes. Herpes simplex virus 1 (HSV-1) antibodies in blood were measured using the luciferase immunoprecipitation assay. Results Observed molecular heterogeneity could be explained by sampling of anatomically distinct sub-regions of the excised ganglia consistent with neurally-enriched and non-neural, i.e. Schwann cell, enriched subregions. The levels of HSV-1 transcripts detected in trigeminal ganglia correlated with blood levels of HSV-1 antibodies. Multiple migraine susceptibility genes were strongly expressed in neurally-enriched trigeminal samples, while others were expressed in blood vessels. Conclusions These data provide a comprehensive human trigeminal transcriptome and a framework for evaluation of inhomogeneous post-mortem tissues through extensive quality control and refined downstream analyses for RNA-Seq methodologies. Expression profiling of migraine susceptibility genes identified by genetic association appears to emphasize the blood vessel component of the trigeminovascular system. Other genes displayed enriched expression in the trigeminal compared to dorsal root ganglion, and in-depth transcriptomic analysis of the KCNK18 gene underlying familial migraine shows selective neural expression within two specific populations of ganglionic neurons. These data suggest that expression profiling of migraine-associated genes can extend and amplify the underlying neurobiological insights obtained from genetic association studies.
Asunto(s)
Herpesvirus Humano 1/genética , Canales de Potasio/genética , ARN/genética , Análisis de Secuencia de ARN/métodos , Ganglio del Trigémino/patología , Adolescente , Adulto , Autopsia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ganglio del Trigémino/fisiología , Ganglio del Trigémino/virología , Adulto JovenRESUMEN
The non-human primate reference transcriptome resource (NHPRTR, available online at http://nhprtr.org/) aims to generate comprehensive RNA-seq data from a wide variety of non-human primates (NHPs), from lemurs to hominids. In the 2012 Phase I of the NHPRTR project, 19 billion fragments or 3.8 terabases of transcriptome sequences were collected from pools of â¼ 20 tissues in 15 species and subspecies. Here we describe a major expansion of NHPRTR by adding 10.1 billion fragments of tissue-specific RNA-seq data. For this effort, we selected 11 of the original 15 NHP species and subspecies and constructed total RNA libraries for the same â¼ 15 tissues in each. The sequence quality is such that 88% of the reads align to human reference sequences, allowing us to compute the full list of expression abundance across all tissues for each species, using the reads mapped to human genes. This update also includes improved transcript annotations derived from RNA-seq data for rhesus and cynomolgus macaques, two of the most commonly used NHP models and additional RNA-seq data compiled from related projects. Together, these comprehensive reference transcriptomes from multiple primates serve as a valuable community resource for genome annotation, gene dynamics and comparative functional analysis.
Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Primates/genética , Análisis de Secuencia de ARN , Animales , Internet , Macaca , Anotación de Secuencia Molecular , Especificidad de Órganos , Estándares de Referencia , Alineación de Secuencia/normasRESUMEN
RNA-based next-generation sequencing (RNA-Seq) provides a tremendous amount of new information regarding gene and transcript structure, expression and regulation. This is particularly true for non-coding RNAs where whole transcriptome analyses have revealed that the much of the genome is transcribed and that many non-coding transcripts have widespread functionality. However, uniform resources for raw, cleaned and processed RNA-Seq data are sparse for most organisms and this is especially true for non-human primates (NHPs). Here, we describe a large-scale RNA-Seq data and analysis infrastructure, the NHP reference transcriptome resource (http://nhprtr.org); it presently hosts data from12 species of primates, to be expanded to 15 species/subspecies spanning great apes, old world monkeys, new world monkeys and prosimians. Data are collected for each species using pools of RNA from comparable tissues. We provide data access in advance of its deposition at NCBI, as well as browsable tracks of alignments against the human genome using the UCSC genome browser. This resource will continue to host additional RNA-Seq data, alignments and assemblies as they are generated over the coming years and provide a key resource for the annotation of NHP genomes as well as informing primate studies on evolution, reproduction, infection, immunity and pharmacology.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genómica , Primates/genética , Transcriptoma , Animales , Genoma Humano , Humanos , Internet , Primates/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ARNRESUMEN
BACKGROUND: Three neuropeptides, gastrin releasing peptide (GRP), natriuritic precursor peptide B (NPPB), and neuromedin B (NMB) have been proposed to play roles in itch sensation. However, the tissues in which these peptides are expressed and their positions in the itch circuit has recently become the subject of debate. Here we used next-gen RNA-Seq to examine the expression of transcripts coding for GRP, NPPB, NMB, and other peptides in DRG, trigeminal ganglion, and the spinal cord as well as expression levels for their cognate receptors in these tissues. RESULTS: RNA-Seq demonstrates that GRP is not transcribed in mouse, rat, or human sensory ganglia. NPPB, which activates natriuretic peptide receptor 1 (NPR1), is well expressed in mouse DRG and less so in rat and human, whereas NPPA, which also acts on the NPR1 receptor, is expressed in all three species. Analysis of transcripts expressed in the spinal cord of mouse, rat, and human reveals no expression of Nppb, but unambiguously detects expression of Grp and the GRP-receptor (Grpr). The transcripts coding for NMB and tachykinin peptides are among the most highly expressed in DRG. Bioinformatics comparisons using the sequence of the peptides used to produce GRP-antibodies with proteome databases revealed that the C-terminal primary sequence of NMB and Substance P can potentially account for results from previous studies which showed GRP-immunostaining in the DRG. CONCLUSIONS: RNA-Seq corroborates a primary itch afferent role for NPPB in mouse and potentially NPPB and NPPA in rats and humans, but does not support GRP as a primary itch neurotransmitter in mouse, rat, or humans. As such, our results are at odds with the initial proposal of Sun and Chen (2007) that GRP is expressed in DRG. By contrast, our data strongly support an itch pathway where the itch-inducing actions of GRP are exerted through its release from spinal cord neurons.
Asunto(s)
Ganglios Espinales/metabolismo , Péptido Liberador de Gastrina/metabolismo , Péptido Natriurético Encefálico/metabolismo , Médula Espinal/citología , Ganglio del Trigémino/metabolismo , Animales , Secuencia de Bases , Biología Computacional , Péptido Liberador de Gastrina/genética , Humanos , Ratones , Péptido Natriurético Encefálico/genética , Ratas , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Especificidad de la EspecieRESUMEN
Taken as a classification paradigm completing the standard model, a new compact form of the SU(2/1) supergroup explains many mysterious properties of the weak interactions: the maximal breaking of parity, the fractional charges of the quarks, the cancellation of the quantum field theory anomalies, and ties together the existence of the right neutrinos and of the heavier Fermions. This compact supergroup is constructed by exponentiating the matrices representing the leptons and the quarks which form a semi-direct sum of Kac modules of the real superalgebra su(2/1,R) such that the overall trace of the $U(1)$ weak-hypercharge $Y$ vanishes. Remarkably, all the elements of this supergroup have Berezinian 1 and determinant 1. In practice, $Tr(Y)=0$ simply means that the electric charge of the hydrogen atom is zero.
RESUMEN
The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We perform long-read, direct RNA nanopore sequencing, as well as Ultima high-coverage RNA-sequencing, of whole blood sampled longitudinally from four SpaceX Inspiration4 astronauts at seven timepoints, spanning pre-flight, day of return, and post-flight recovery. We report key genetic pathways, including changes in erythrocyte regulation, stress induction, and immune changes affected by spaceflight. We also present the first m6A methylation profiles for a human space mission, suggesting a significant spike in m6A levels immediately post-flight. These data and results represent the first longitudinal long-read RNA profiles and RNA modification maps for each gene for astronauts, improving our understanding of the human transcriptome's dynamic response to spaceflight.
Asunto(s)
Astronautas , Análisis de Secuencia de ARN , Vuelo Espacial , Humanos , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Ingravidez , Masculino , Hematopoyesis/genética , Secuenciación de Nanoporos/métodos , Adulto , ARN/genética , ARN/sangre , Metilación , Persona de Mediana EdadRESUMEN
Next-generation sequencing (NGS) has revolutionized genomic research by enabling high-throughput, cost-effective genome and transcriptome sequencing accelerating personalized medicine for complex diseases, including cancer. Whole genome/transcriptome sequencing (WGS/WTS) provides comprehensive insights, while targeted sequencing is more cost-effective and sensitive. In comparison to short-read sequencing, which still dominates the field due to high speed and cost-effectiveness, long-read sequencing can overcome alignment limitations and better discriminate similar sequences from alternative transcripts or repetitive regions. Hybrid sequencing combines the best strengths of different technologies for a more comprehensive view of genomic/transcriptomic variations. Understanding each technology's strengths and limitations is critical for translating cutting-edge technologies into clinical applications. In this study, we sequenced DNA and RNA libraries of reference samples using various targeted DNA and RNA panels and the whole transcriptome on both short-read and long-read platforms. This study design enables a comprehensive analysis of sequencing technologies, targeting protocols, and library preparation methods. Our expanded profiling landscape establishes a reference point for assessing current sequencing technologies, facilitating informed decision-making in genomic research and precision medicine.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , RNA-Seq , Análisis de Secuencia de ADN/métodos , Transcriptoma , Análisis de Secuencia de ARN , Medicina de PrecisiónRESUMEN
Certified RNA reference materials are indispensable for assessing the reliability of RNA sequencing to detect intrinsically small biological differences in clinical settings, such as molecular subtyping of diseases. As part of the Quartet Project for quality control and data integration of multi-omics profiling, we established four RNA reference materials derived from immortalized B-lymphoblastoid cell lines from four members of a monozygotic twin family. Additionally, we constructed ratio-based transcriptome-wide reference datasets between two samples, providing cross-platform and cross-laboratory 'ground truth'. Investigation of the intrinsically subtle biological differences among the Quartet samples enables sensitive assessment of cross-batch integration of transcriptomic measurements at the ratio level. The Quartet RNA reference materials, combined with the ratio-based reference datasets, can serve as unique resources for assessing and improving the quality of transcriptomic data in clinical and biological settings.
RESUMEN
The organization of mammalian DNA replication is poorly understood. We have produced high-resolution dynamic maps of the timing of replication in human erythroid, mesenchymal, and embryonic stem (ES) cells using TimEX, a method that relies on gaussian convolution of massive, highly redundant determinations of DNA copy-number variations during S phase to produce replication timing profiles. We first obtained timing maps of 3% of the genome using high-density oligonucleotide tiling arrays and then extended the TimEX method genome-wide using massively parallel sequencing. We show that in untransformed human cells, timing of replication is highly regulated and highly synchronous, and that many genomic segments are replicated in temporal transition regions devoid of initiation, where replication forks progress unidirectionally from origins that can be hundreds of kilobases away. Absence of initiation in one transition region is shown at the molecular level by single molecule analysis of replicated DNA (SMARD). Comparison of ES and erythroid cells replication patterns revealed that these cells replicate about 20% of their genome in different quarters of S phase. Importantly, we detected a strong inverse relationship between timing of replication and distance to the closest expressed gene. This relationship can be used to predict tissue-specific timing of replication profiles from expression data and genomic annotations. We also provide evidence that early origins of replication are preferentially located near highly expressed genes, that mid-firing origins are located near moderately expressed genes, and that late-firing origins are located far from genes.
Asunto(s)
Momento de Replicación del ADN , Replicación del ADN , Células Madre Embrionarias , Células Eritroides , Perfilación de la Expresión Génica , Células Madre Mesenquimatosas , Fase S , Diferenciación Celular , ADN/biosíntesis , ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Eritroides/citología , Células Eritroides/metabolismo , Dosificación de Gen , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Distribución NormalRESUMEN
Endogenous small interfering RNAs (endo-siRNAs) regulate diverse gene expression programs in eukaryotes by either binding and cleaving mRNA targets or mediating heterochromatin formation; however, the mechanisms of endo-siRNA biogenesis, sorting, and target regulation remain poorly understood. Here we report the identification and function of a specific class of germline-generated endo-siRNAs in Caenorhabditis elegans that are 26 nt in length and contain a guanine at the first nucleotide position (i.e., 26G RNAs). 26G RNAs regulate gene expression during spermatogenesis and zygotic development, and their biogenesis requires the ERI-1 exonuclease and the RRF-3 RNA-dependent RNA polymerase (RdRP). Remarkably, we identified two nonoverlapping subclasses of 26G RNAs that sort into specific RNA-induced silencing complexes (RISCs) and differentially regulate distinct mRNA targets. Class I 26G RNAs target genes are expressed during spermatogenesis, whereas class II 26G RNAs are maternally inherited and silence gene expression during zygotic development. These findings implicate a class of endo-siRNAs in the global regulation of transcriptional programs required for fertility and development.
Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Guanina/metabolismo , ARN Interferente Pequeño/metabolismo , Espermatogénesis/genética , Cigoto/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Exorribonucleasas/metabolismo , Silenciador del Gen , Células Germinativas/metabolismo , Masculino , ARN de Helminto/clasificación , ARN de Helminto/metabolismo , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/clasificación , Análisis de Secuencia de ADNRESUMEN
A natural generalization of a Lie algebra connection, or Yang-Mills field, to the case of a Lie-Kac superalgebra, for example SU(m/n), just in terms of ordinary complex functions and differentials, is proposed. Using the chirality χ which defines the supertrace of the superalgebra: S T r ( ) = T r ( χ ) , we construct a covariant differential: D = χ ( d + A ) + Φ , where A is the standard even Lie-subalgebra connection 1-form and Φ a scalar field valued in the odd module. Despite the fact that Φ is a scalar, Φ anticomtes with ( χ A ) because χ anticommutes with the odd generators hidden in Φ . Hence the curvature F = DD is a superalgebra-valued linear map which respects the Bianchi identity and correctly defines a chiral parallel transport compatible with a generic Lie superalgebra structure.
RESUMEN
We propose an extension of the Yang-Mills paradigm from Lie algebras to internal chiral superalgebras. We replace the Lie algebra-valued connection one-form A, by a superalgebra-valued polyform A Ë mixing exterior-forms of all degrees and satisfying the chiral self-duality condition A Ë = * A Ë χ , where χ denotes the superalgebra grading operator. This superconnection contains Yang-Mills vectors valued in the even Lie subalgebra, together with scalars and self-dual tensors valued in the odd module, all coupling only to the charge parity CP-positive Fermions. The Fermion quantum loops then induce the usual Yang-Mills-scalar Lagrangian, the self-dual Avdeev-Chizhov propagator of the tensors, plus a new vector-scalar-tensor vertex and several quartic terms which match the geometric definition of the supercurvature. Applied to the SU(2/1) Lie-Kac simple superalgebra, which naturally classifies all the elementary particles, the resulting quantum field theory is anomaly-free and the interactions are governed by the super-Killing metric and by the structure constants of the superalgebra.
RESUMEN
At the classical level, the SU(2/1) superalgebra offers a natural description of the elementary particles: leptons and quarks massless states, graded by their chirality, fit the smallest irreducible representations of SU(2/1). Our new proposition is to pair the left/right space-time chirality with the superalgebra chirality and to study the model at the one-loop quantum level. If, despite the fact that they are non-Hermitian, we use the odd matrices of SU(2/1) to minimally couple an oriented complex Higgs scalar field to the chiral Fermions, novel anomalies occur. They affect the scalar propagators and vertices. However, these undesired new terms cancel out, together with the Adler-Bell-Jackiw vector anomalies, because the quarks compensate the leptons. The unexpected and striking consequence is that the scalar propagator must be normalized using the antisymmetric super-Killing metric and the scalar-vector vertex must use the symmetric d_aij structure constants of the superalgebra. Despite this extraordinary structure, the resulting Lagrangian is actually Hermitian.
RESUMEN
Understanding molecular alterations associated with peripheral inflammation is a critical factor in selectively controlling acute and persistent pain. The present report employs in situ hybridization of the 2 opioid precursor mRNAs coupled with quantitative measurements of 2 peptides derived from the prodynorphin and proenkephalin precursor proteins: dynorphin A 1-8 and [Met5]-enkephalin-Arg6-Gly7-Leu8. In dorsal spinal cord ipsilateral to the inflammation, dynorphin A 1-8 was elevated after inflammation, and persisted as long as the inflammation was sustained. Qualitative identification by high performance liquid chromatography and gel permeation chromatography revealed the major immunoreactive species in control and inflamed extracts to be dynorphin A 1-8. In situ hybridization in spinal cord after administration of the inflammatory agent, carrageenan, showed increased expression of prodynorphin (Pdyn) mRNA somatotopically in medial superficial dorsal horn neurons. The fold increase in preproenkephalin mRNA (Penk) was comparatively lower, although the basal expression is substantially higher than Pdyn. While Pdyn is not expressed in the dorsal root ganglion (DRG) in basal conditions, it can be induced by nerve injury, but not by inflammation alone. A bioinformatic meta-analysis of multiple nerve injury datasets confirmed Pdyn upregulation in DRG across different nerve injury models. These data support the idea that activation of endogenous opioids, notably dynorphin, is a dynamic indicator of persistent pain states in spinal cord and of nerve injury in DRG. PERSPECTIVE: This is a systematic, quantitative assessment of dynorphin and enkephalin peptides and mRNA in dorsal spinal cord and DRG neurons in response to peripheral inflammation and axotomy. These studies form the foundational framework for understanding how endogenous spinal opioid peptides are involved in nociceptive circuit modulation.
Asunto(s)
Dinorfinas/metabolismo , Encefalinas/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Mediadores de Inflamación/metabolismo , Médula Espinal/metabolismo , Animales , Dinorfinas/análisis , Encefalinas/análisis , Ganglios Espinales/química , Mediadores de Inflamación/análisis , Masculino , Péptidos Opioides/análisis , Péptidos Opioides/metabolismo , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/químicaRESUMEN
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide, including >18,000 in New York City (NYC) alone. The sudden emergence of this pandemic has highlighted a pressing clinical need for rapid, scalable diagnostics that can detect infection, interrogate strain evolution, and identify novel patient biomarkers. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs, plus a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, bacterial, and viral profiling. We applied both technologies across 857 SARS-CoV-2 clinical specimens and 86 NYC subway samples, providing a broad molecular portrait of the COVID-19 NYC outbreak. Our results define new features of SARS-CoV-2 evolution, nominate a novel, NYC-enriched viral subclade, reveal specific host responses in interferon, ACE, hematological, and olfaction pathways, and examine risks associated with use of ACE inhibitors and angiotensin receptor blockers. Together, these findings have immediate applications to SARS-CoV-2 diagnostics, public health, and new therapeutic targets.
RESUMEN
BACKGROUND: Transcriptome sequencing using next-generation sequencing platforms will soon be competing with DNA microarray technologies for global gene expression analysis. As a preliminary evaluation of these promising technologies, we performed deep sequencing of cDNA synthesized from the Microarray Quality Control (MAQC) reference RNA samples using Roche's 454 Genome Sequencer FLX. RESULTS: We generated more that 3.6 million sequence reads of average length 250 bp for the MAQC A and B samples and introduced a data analysis pipeline for translating cDNA read counts into gene expression levels. Using BLAST, 90% of the reads mapped to the human genome and 64% of the reads mapped to the RefSeq database of well annotated genes with e-values = 10-20. We measured gene expression levels in the A and B samples by counting the numbers of reads that mapped to individual RefSeq genes in multiple sequencing runs to evaluate the MAQC quality metrics for reproducibility, sensitivity, specificity, and accuracy and compared the results with DNA microarrays and Quantitative RT-PCR (QRTPCR) from the MAQC studies. In addition, 88% of the reads were successfully aligned directly to the human genome using the AceView alignment programs with an average 90% sequence similarity to identify 137,899 unique exon junctions, including 22,193 new exon junctions not yet contained in the RefSeq database. CONCLUSION: Using the MAQC metrics for evaluating the performance of gene expression platforms, the ExpressSeq results for gene expression levels showed excellent reproducibility, sensitivity, and specificity that improved systematically with increasing shotgun sequencing depth, and quantitative accuracy that was comparable to DNA microarrays and QRTPCR. In addition, a careful mapping of the reads to the genome using the AceView alignment programs shed new light on the complexity of the human transcriptome including the discovery of thousands of new splice variants.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ARN/métodos , ADN Complementario/genética , Bases de Datos Genéticas , Biblioteca de Genes , Genoma Humano , Humanos , Control de Calidad , Estándares de Referencia , Sensibilidad y Especificidad , Alineación de Secuencia , Programas InformáticosRESUMEN
We have assessed the utility of RNA titration samples for evaluating microarray platform performance and the impact of different normalization methods on the results obtained. As part of the MicroArray Quality Control project, we investigated the performance of five commercial microarray platforms using two independent RNA samples and two titration mixtures of these samples. Focusing on 12,091 genes common across all platforms, we determined the ability of each platform to detect the correct titration response across the samples. Global deviations from the response predicted by the titration ratios were observed. These differences could be explained by variations in relative amounts of messenger RNA as a fraction of total RNA between the two independent samples. Overall, both the qualitative and quantitative correspondence across platforms was high. In summary, titration samples may be regarded as a valuable tool, not only for assessing microarray platform performance and different analysis methods, but also for determining some underlying biological features of the samples.