Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Microbiol Immunol (Bp) ; 14(2): 143-153, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38451280

RESUMEN

Borrelia burgdorferi, the causative agent of Lyme disease, has recently been demonstrated to infect and enhance the invasive properties of breast cancer cells, while also influencing the expression of inflammatory chemokines (CXCL8 and CXCL10). This study investigates the presence of B. burgdorferi in invasive breast cancer tissues using commercially available, FDA-approved breast cancer tissue microarrays consisting of 350 ductal, 32 lobular, and 22 intraductal invasive breast carcinomas, alongside 29 normal breast tissues. Employing fluorescent immunohistochemical staining and high-resolution imaging, the findings revealed that approximately 20% of invasive lobular and ductal carcinomas, followed by 14% of intraductal carcinomas, tested positive for B. burgdorferi, while all normal breast tissues tested negative. PCR analysis further confirmed the presence of B. burgdorferi DNA in breast cancer tissues. Moreover, 25% of B. burgdorferi-positive tissues exhibited expression of both chemokines, CXCL8 and CXCL10, which was not observed in B. burgdorferi-negative tissues. Analysis of available patient data, including age, indicated a correlation between older patients and B. burgdorferi-positive tissues. This study validates the presence of B. burgdorferi in invasive breast cancer tissues and highlights the involvement of key CXCL family members associated with inflammatory processes.

2.
Microorganisms ; 12(9)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39338441

RESUMEN

Borrelia burgdorferi, the bacterium responsible for Lyme disease, has been shown to form antimicrobial-tolerant biofilms, which protect it from unfavorable conditions. Bacterial biofilms are known to significantly contribute to severe inflammation, such as carditis, a common manifestation of Lyme disease. However, the role of B. burgdorferi biofilms in the development of Lyme carditis has not been thoroughly investigated due to the absence of an appropriate model system. In this study, we examined heart tissues from mice infected with B. burgdorferi for the presence of biofilms and inflammatory markers using immunohistochemistry (IHC), combined fluorescence in situ hybridization FISH/IHC, 3D microscopy, and atomic force microscopy techniques. Our results reveal that B. burgdorferi spirochetes form aggregates with a known biofilm marker (alginate) in mouse heart tissues. Furthermore, these biofilms induce inflammation, as indicated by elevated levels of murine C-reactive protein near the biofilms. This research provides evidence that B. burgdorferi can form biofilms in mouse heart tissue and trigger inflammatory processes, suggesting that the mouse model is a valuable tool for future studies on B. burgdorferi biofilms.

3.
Eur J Microbiol Immunol (Bp) ; 13(3): 63-76, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37856211

RESUMEN

The bacterial spirochete Borrelia burgdorferi, the causative agent of Lyme Disease, can disseminate and colonize various tissues and organs, orchestrating severe clinical symptoms including arthritis, carditis, and neuroborreliosis. Previous research has demonstrated that breast cancer tissues could provide an ideal habitat for diverse populations of bacteria, including B. burgdorferi, which is associated with a poor prognosis. Recently, we demonstrated that infection with B. burgdorferi enhances the invasion and migration of triple-negative MDA-MB-231 cells which represent a type of breast tumor with more aggressive cancer traits. In this study, we hypothesized that infection by B. burgdorferi affects the expression of cancer-associated genes to effectuate breast cancer phenotypes. We applied the high-throughput technique of RNA-sequencing on B. burgdorferi-infected MDA-MB-231 breast cancer and normal-like MCF10A cells to determine the most differentially expressed genes (DEG) upon infection. Overall, 142 DEGs were identified between uninfected and infected samples in MDA-MB-231 while 95 DEGs were found in MCF10A cells. A major trend of the upregulation of C-X-C and C-C motif chemokine family members as well as genes and pathways was associated with infection, inflammation, and cancer. These genes could serve as potential biomarkers for pathogen-related tumorigenesis and cancer progression which could lead to new therapeutic opportunities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA