Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biophys J ; 123(13): 1846-1856, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824390

RESUMEN

Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here, we used small-angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-ß-D-maltoside (DDM) fractionates on size-exclusion chromatography (SEC) as two fractions. We show that, in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an AlphaFold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicate an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the Methanoculleus marisnigri JR1 IAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP into a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.


Asunto(s)
Proteasas de Ácido Aspártico , Haloferax volcanii , Difracción de Neutrones , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Proteasas de Ácido Aspártico/metabolismo , Proteasas de Ácido Aspártico/química , Haloferax volcanii/enzimología , Membrana Celular/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Simulación de Dinámica Molecular , Estructura Cuaternaria de Proteína
2.
J Biol Chem ; 299(12): 105401, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38270390

RESUMEN

Intramembrane proteases (IPs) hydrolyze peptides in the lipid membrane. IPs participate in a number of cellular pathways including immune response and surveillance, and cholesterol biosynthesis, and they are exploited by viruses for replication. Despite their broad importance across biology, how activity is regulated in the cell to control protein maturation and release of specific bioactive peptides at the right place and right time remains largely unanswered, particularly for the intramembrane aspartyl protease (IAP) subtype. At a molecular biochemical level, different IAP homologs can cleave non-biological substrates, and there is no sequence recognition motif among the nearly 150 substrates identified for just one IAP, presenilin-1, the catalytic component of γ-secretase known for its involvement in the production of amyloid-ß plaques associated with Alzheimer disease. Here we used gel-based assays combined with quantitative mass spectrometry and FRET-based kinetics assays to probe the cleavage profile of the presenilin homolog from the methanogen Methanoculleus marisnigri JR1 as a function of the surrounding lipid-mimicking environment, either detergent micelles or bicelles. We selected four biological IAP substrates that have not undergone extensive cleavage profiling previously, namely, the viral core protein of Hepatitis C virus, the viral core protein of Classical Swine Fever virus, the transmembrane segment of Notch-1, and the tyrosine receptor kinase ErbB4. Our study demonstrates a proclivity toward cleavage of substrates at positions of low average hydrophobicity and a consistent role for the lipid environment in modulating kinetic properties.


Asunto(s)
Proteasas de Ácido Aspártico , Proteínas Bacterianas , Lípidos , Methanomicrobiaceae , Presenilinas , Proteasas de Ácido Aspártico/química , Lípidos/química , Presenilinas/química , Methanomicrobiaceae/química , Proteínas Bacterianas/química , Proteínas del Núcleo Viral/química , Cinética
3.
J Biol Chem ; 295(46): 15438-15453, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32883809

RESUMEN

Widespread testing for the presence of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in individuals remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. Challenges in testing can be traced to an initial shortage of supplies, expertise, and/or instrumentation necessary to detect the virus by quantitative RT-PCR (RT-qPCR), the most robust, sensitive, and specific assay currently available. Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can replicate commercially available SARS-CoV-2 RT-qPCR test kits and backfill pipeline shortages. The Georgia Tech COVID-19 Test Kit Support Group, composed of faculty, staff, and trainees across the biotechnology quad at Georgia Institute of Technology, synthesized multiplexed primers and probes and formulated a master mix composed of enzymes and proteins produced in-house. Our in-house kit compares favorably with a commercial product used for diagnostic testing. We also developed an environmental testing protocol to readily monitor surfaces for the presence of SARS-CoV-2. Our blueprint should be readily reproducible by research teams at other institutions, and our protocols may be modified and adapted to enable SARS-CoV-2 detection in more resource-limited settings.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Juego de Reactivos para Diagnóstico/economía , SARS-CoV-2/genética , Transferencia de Tecnología , Universidades/economía , Biotecnología/métodos , COVID-19/virología , Humanos , Juego de Reactivos para Diagnóstico/provisión & distribución , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/aislamiento & purificación
4.
Protein Sci ; 31(11): e4470, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36222314

RESUMEN

As the epidemic of single-use plastic worsens, it has become critical to identify fully renewable plastics such as those that can be degraded using enzymes. Here we describe the structure and biochemistry of an alkaline poly[(R)-3-hydroxybutyric acid] (PHB) depolymerase from the soil thermophile Lihuaxuella thermophila. Like other PHB depolymerases or PHBases, the Lihuaxuella enzyme is active against several different polyhydroxyalkanoates, including homo- and heteropolymers, but L. thermophila PHB depolymerase (LtPHBase) is unique in that it also hydrolyzes polylactic acid and polycaprolactone. LtPHBase exhibits optimal activity at 70°C, and retains 88% of activity upon incubation at 65°C for 3 days. The 1.2 Å resolution crystal structure reveals an α/ß-hydrolase fold typical of PHBases, but with a shallow active site containing the catalytic Ser-His-Asp-triad that appears poised for broad substrate specificity. LtPHBase holds promise for the depolymerization of PHB and related bioplastics at high temperature, as would be required in bioindustrial operations like recycling or landfill management.


Asunto(s)
Hidroxibutiratos , Suelo , Hidroxibutiratos/metabolismo , Hidrolasas de Éster Carboxílico/química , Dominio Catalítico , Especificidad por Sustrato
5.
medRxiv ; 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32766604

RESUMEN

Widespread testing for the presence of the novel coronavirus SARS-CoV-2 in individuals remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. Challenges in testing can be traced to an initial shortage of supplies, expertise and/or instrumentation necessary to detect the virus by quantitative reverse transcription polymerase chain reaction (RT-qPCR), the most robust, sensitive, and specific assay currently available. Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can replicate commercially available SARS-CoV-2 RT-qPCR test kits and backfill pipeline shortages. The Georgia Tech COVID-19 Test Kit Support Group, composed of faculty, staff, and trainees across the biotechnology quad at Georgia Institute of Technology, synthesized multiplexed primers and probes and formulated a master mix composed of enzymes and proteins produced in-house. Our in-house kit compares favorably to a commercial product used for diagnostic testing. We also developed an environmental testing protocol to readily monitor surfaces across various campus laboratories for the presence of SARS-CoV-2. Our blueprint should be readily reproducible by research teams at other institutions, and our protocols may be modified and adapted to enable SARS-CoV-2 detection in more resource-limited settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA