Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Gut ; 72(2): 275-294, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35241625

RESUMEN

OBJECTIVE: Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD. DESIGN: Taking advantage of conditional GGTase and RAC1 knockout mice in intestinal epithelial cells (Pggt1b iΔIEC and Rac1 iΔIEC mice), intravital microscopy, immunostaining, mechanobiology, organoid techniques and RNA sequencing, we analysed cell shedding alterations within the intestinal epithelium. Moreover, we examined human gut tissue and intestinal organoids from patients with IBD for cell shedding alterations and RAC1 function. RESULTS: Epithelial Pggt1b deletion led to cytoskeleton rearrangement and tight junction redistribution, causing cell overcrowding due to arresting of cell shedding that finally resulted in epithelial leakage and spontaneous mucosal inflammation in the small and to a lesser extent in the large intestine. Both in vivo and in vitro studies (knockout mice, organoids) identified RAC1 as a GGTase target critically involved in prenylation-dependent cytoskeleton dynamics, cell mechanics and epithelial cell shedding. Moreover, inflamed areas of gut tissue from patients with IBD exhibited funnel-like structures, signs of arrested cell shedding and impaired RAC1 function. RAC1 inhibition in human intestinal organoids caused actin alterations compatible with arresting of cell shedding. CONCLUSION: Impaired epithelial RAC1 function causes cell overcrowding and epithelial leakage thus inducing chronic intestinal inflammation. Epithelial RAC1 emerges as key regulator of cytoskeletal dynamics, cell mechanics and intestinal cell shedding. Modulation of RAC1 might be exploited for restoration of epithelial integrity in the gut of patients with IBD.


Asunto(s)
Citoesqueleto , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ratones , Células Epiteliales , Inflamación , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/fisiología , Ratones Noqueados , Proteína de Unión al GTP rac1
2.
Gastroenterology ; 157(5): 1293-1309, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31302143

RESUMEN

BACKGROUND & AIMS: It is not clear how regulation of T-cell function is altered during development of inflammatory bowel diseases (IBD). We studied the mechanisms by which geranylgeranyltransferase-mediated prenylation controls T-cell localization to the intestine and chronic inflammation. METHODS: We generated mice with T-cell-specific disruption of the geranylgeranyltransferase type I, beta subunit gene (Pggt1b), called Pggt1bΔCD4 mice, or the ras homolog family member A gene (Rhoa), called RhoaΔCD4 mice. We also studied mice with knockout of CDC42 or RAC1 and wild-type mice (controls). Intestinal tissues were analyzed by histology, multiphoton and confocal microscopy, and real-time polymerase chain reaction. Activation of CDC42, RAC1, and RHOA were measured with G-LISA, cell fractionation, and immunoblots. T cells and lamina propria mononuclear cells from mice were analyzed by flow cytometry or transferred to Rag1-/- mice. Mice were given injections of antibodies against integrin alpha4beta7 or gavaged with the RORC antagonist GSK805. We obtained peripheral blood and intestinal tissue samples from patients with and without IBD and analyzed them by flow cytometry. RESULTS: Pggt1bΔCD4 mice developed spontaneous colitis, characterized by thickening of the intestinal wall, edema, fibrosis, accumulation of T cells in the colon, and increased expression of inflammatory cytokines. Compared with control CD4+ T cells, PGGT1B-deficient CD4+ T cells expressed significantly higher levels of integrin alpha4beta7, which regulates their localization to the intestine. Inflammation induced by transfer of PGGT1B-deficient CD4+ T cells to Rag1-/- mice was blocked by injection of an antibody against integrin alpha4beta7. Lamina propria of Pggt1bΔCD4 mice had increased numbers of CD4+ T cells that expressed RORC and higher levels of cytokines produced by T-helper 17 cells (granulocyte-macrophage colony-stimulating factor, interleukin [IL]17A, IL17F, IL22, and tumor necrosis factor [TNF]). The RORC inverse agonist GSK805, but not antibodies against IL17A or IL17F, prevented colitis in Pggt1bΔCD4 mice. PGGT1B-deficient CD4+ T cells had decreased activation of RHOA. RhoAΔCD4 mice had a similar phenotype to Pggt1bΔCD4 mice, including development of colitis, increased numbers of CD4+ T cells in colon, increased expression of integrin alpha4beta7 by CD4+ T cells, and increased levels of IL17A and other inflammatory cytokines in lamina propria. T cells isolated from intestinal tissues from patients with IBD had significantly lower levels of PGGT1B than tissues from individuals without IBD. CONCLUSION: Loss of PGGT1B from T cells in mice impairs RHOA function, increasing CD4+ T-cell expression of integrin alpha4beta7 and localization to colon, resulting in increased expression of inflammatory cytokines and colitis. T cells isolated from gut tissues from patients with IBD have lower levels of PGGT1B than tissues from patients without IBD.


Asunto(s)
Transferasas Alquil y Aril/deficiencia , Quimiotaxis de Leucocito , Colitis/enzimología , Colon/enzimología , Integrinas/metabolismo , Linfocitos T/enzimología , Proteínas de Unión al GTP rho/metabolismo , Inmunidad Adaptativa , Transferasas Alquil y Aril/genética , Animales , Estudios de Casos y Controles , Células Cultivadas , Colitis/genética , Colitis/inmunología , Colitis/patología , Colon/inmunología , Colon/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Activación de Linfocitos , Ratones Noqueados , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/patología , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/deficiencia , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA
3.
Gut ; 66(4): 716-723, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27566130

RESUMEN

OBJECTIVES: Autoimmune hepatitis (AIH) is a severe necroinflammatory liver disease associated with significant mortality. Although loss of hepatocytes is generally recognised as a key trigger of liver inflammation and liver failure, the regulation of hepatic cell death causing AIH remains poorly understood. The aim of this study was to identify molecular mechanisms that drive hepatocyte cell death in the pathogenesis of acute liver injury. DESIGN: Acute liver injury was modelled in mice by intravenous administration of concanavalin A (ConA). Liver injury was demonstrated by serum transaminases and histological assessment of liver sections. PGAM5-deficient mice (PGAM5-/-) were used to determine its role in experimental hepatitis. Mdivi-1 was used as an inhibitor of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Mitochondrial fission and the expression of PGAM5 were compared between liver biopsies derived from patients with AIH and control patients. RESULTS: PGAM5 was highly expressed in hepatocytes of patients with AIH and in mice with ConA-induced experimental hepatitis. Deficiency of PGAM5 protected mice from ConA-induced hepatocellular death and liver injury. PGAM5 regulated ConA-induced mitochondrial fission in hepatocytes. Administration of the Drp1-inhibitor Mdivi-1 blocked mitochondrial fission, diminished hepatocyte cell death and attenuated liver tissue damage induced by ConA. CONCLUSIONS: Our data demonstrate for the first time that PGAM5 plays an indispensable role in the pathogenesis of ConA-induced liver injury. Downstream of PGAM5, Drp1-mediated mitochondrial fission is an obligatory step that drives the execution of hepatic necrosis and tissue damage. Our data highlight the PGAM5-Drp1 axis as a potential therapeutic target for acute immune-mediated liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Hepatitis Autoinmune/genética , Hepatitis Autoinmune/metabolismo , Hepatocitos/metabolismo , Hígado/patología , Proteínas Mitocondriales/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Estudios de Casos y Controles , Muerte Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Concanavalina A , Dinaminas/antagonistas & inhibidores , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/genética , Necrosis/inducido químicamente , Necrosis/genética , Fosfoproteínas Fosfatasas/deficiencia , Quinazolinonas/farmacología
4.
Gastroenterology ; 160(3): 925-928.e4, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33075345
5.
Cells ; 11(8)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35455942

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 has lasted for more than two years. Despite the presence of very effective vaccines, the number of virus variants that escape neutralizing antibodies is growing. Thus, there is still a need for effective antiviral treatments that target virus replication independently of the circulating variant. Here, we show for the first time that deficiency or pharmacological inhibition of the cellular lysine-methyltransferase SMYD2 decreases TMPRSS2 expression on both mRNA and protein levels. SARS-CoV-2 uses TMPRSS2 for priming its spike protein to infect target cells. Treatment of cultured cells with the SMYD2 inhibitors AZ505 or BAY598 significantly inhibited viral replication. In contrast, treatment of Vero E6 cells, which do not express detectable amounts of TMPRSS2, had no effect on SARS-CoV-2 infection. Moreover, by generating a recombinant reporter virus that expresses the spike protein of the Delta variant of SARS-CoV-2, we demonstrate that BAY598 exhibits similar antiviral activity against this variant of concern. In summary, SMYD2 inhibition downregulates TMPRSS2 and blocks viral replication. Targeting cellular SMYD2 represents a promising tool to curtail SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Células Epiteliales , N-Metiltransferasa de Histona-Lisina , Serina Endopeptidasas , Antivirales/farmacología , COVID-19/patología , Células Epiteliales/metabolismo , Células Epiteliales/virología , N-Metiltransferasa de Histona-Lisina/genética , Humanos , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
6.
Cell Death Dis ; 13(1): 52, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022391

RESUMEN

SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer. Increased expression levels of SMYD2 were detected in human and murine colon tumor tissues compared to tumor-free tissues. SMYD2 deficiency in colonic tumor cells strongly decreased tumor growth in two independent experimental cancer models. On a molecular level, SMYD2 deficiency sensitized colonic tumor cells to TNF-induced apoptosis and necroptosis without affecting cell proliferation. Moreover, we found that SMYD2 targeted RIPK1 and inhibited the phosphorylation of RIPK1. Finally, in a translational approach, pharmacological inhibition of SMYD2 attenuated colonic tumor growth. Collectively, our data show that SMYD2 is crucial for colon tumor growth and inhibits TNF-induced apoptosis and necroptosis.


Asunto(s)
Neoplasias del Colon , Necroptosis , Animales , Apoptosis , Neoplasias del Colon/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Ratones , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
7.
J Virol ; 84(8): 4083-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20147393

RESUMEN

Cytomegalovirus (CMV) infection in patients receiving hematopoietic stem cell transplants (HSCT) is associated with morbidity and mortality. Adoptive T cell immunotherapy has been used to treat viral reactivation but is hardly feasible in high-risk constellations of CMV-positive HSCT patients and CMV-negative stem cell donors. We endowed human effector T cells with a chimeric immunoreceptor (cIR) directed against CMV glycoprotein B. These cIR-engineered primary T cells mediated antiviral effector functions such as cytokine production and cytolysis. This first description of cIR-redirected CMV-specific T cells opens up a new perspective for HLA-independent immunotherapy of CMV infection in high-risk patients.


Asunto(s)
Citomegalovirus/inmunología , Citomegalovirus/fisiología , Receptores Inmunológicos/genética , Linfocitos T/inmunología , Linfocitos T/virología , Células Cultivadas , Infecciones por Citomegalovirus/terapia , Humanos , Inmunoterapia/métodos , Receptores Inmunológicos/metabolismo
8.
Sci Rep ; 10(1): 13129, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753653

RESUMEN

Screening colonoscopy is crucial in reducing the mortality of colorectal cancer. However, detecting adenomas against the backdrop of an inflamed mucosa (e.g. in ulcerative colitis) remains exceedingly difficult. Therefore, we aimed to improve neoplastic lesion detection by employing a fluorescence-based endoscopic approach. We used the well-established murine AOM/DSS model to induce inflammation-driven carcinogenesis in the colon. In our diagnostic approach, we evaluated Chlorin e6 polyvinylpyrrolidone (Ce6-PVP)-based fluorescence endoscopy in comparison to standard white-light endoscopy. A specialized pathologist then analyzed the histology of the detected lesions. Complementary in vitro studies were performed using human cell lines and a murine organoid system. Ce6-PVP-based fluorescence endoscopy had an improved detection rate of 100% (8/8) in detecting high-grade dysplasias and carcinomas over white-light detection alone with 75% (6/8). Trade-off for this superior detection rate was an increased rate of false positive lesions with an increase in the false discovery rate from 45% for white-light endoscopy to 81% for fluorescence endoscopy. We demonstrate in a proof-of-concept study that Ce6-PVP-based fluorescence endoscopy is a highly sensitive red flag technology to identify biopsy-worthy lesions in the colon.


Asunto(s)
Neoplasias Asociadas a Colitis/diagnóstico , Colonoscopía , Porfirinas/química , Porfirinas/farmacología , Povidona/química , Administración Tópica , Animales , Biopsia , Células CACO-2 , Clorofilidas , Neoplasias Asociadas a Colitis/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Porfirinas/administración & dosificación
9.
J Exp Med ; 214(6): 1655-1662, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28476895

RESUMEN

Cancer cells often acquire capabilities to evade cell death induced by current chemotherapeutic treatment approaches. Caspase-8, a central initiator of death receptor-mediated apoptosis, for example, is frequently inactivated in human cancers via multiple mechanisms such as mutation. Here, we show an approach to overcome cell death resistance in caspase-8-deficient colorectal cancer (CRC) by induction of necroptosis. In both a hereditary and a xenograft mouse model of caspase-8-deficient CRC, second mitochondria-derived activator of caspase (SMAC) mimetic treatment induced massive cell death and led to regression of tumors. We further demonstrate that receptor-interacting protein kinase 3 (RIP3), which is highly expressed in mouse models of CRC and in a subset of human CRC cell lines, is the deciding factor of cancer cell susceptibility to SMAC mimetic-induced necroptosis. Thus, our data implicate that it may be worthwhile to selectively evaluate the efficacy of SMAC mimetic treatment in CRC patients with caspase-8 deficiency in clinical trials for the development of more effective personalized therapy.


Asunto(s)
Apoptosis , Neoplasias Colorrectales/patología , Animales , Caspasa 8/metabolismo , Colon/patología , Neoplasias Colorrectales/enzimología , Enterocitos/metabolismo , Células HT29 , Humanos , Ratones , Proteínas Mitocondriales/metabolismo , Necrosis , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Clin Invest ; 126(2): 611-26, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26752649

RESUMEN

Although defects in intestinal barrier function are a key pathogenic factor in patients with inflammatory bowel diseases (IBDs), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we addressed this issue by characterizing the transcriptome of IECs from IBD patients using a genome-wide approach. We observed disease-specific alterations in IECs with markedly impaired Rho-A signaling in active IBD patients. Localization of epithelial Rho-A was shifted to the cytosol in IBDs, and inflammation was associated with suppressed Rho-A activation due to reduced expression of the Rho-A prenylation enzyme geranylgeranyltransferase-I (GGTase-I). Functionally, we found that mice with conditional loss of Rhoa or the gene encoding GGTase-I, Pggt1b, in IECs exhibit spontaneous chronic intestinal inflammation with accumulation of granulocytes and CD4+ T cells. This phenotype was associated with cytoskeleton rearrangement and aberrant cell shedding, ultimately leading to loss of epithelial integrity and subsequent inflammation. These findings uncover deficient prenylation of Rho-A as a key player in the pathogenesis of IBDs. As therapeutic triggering of Rho-A signaling suppressed intestinal inflammation in mice with GGTase-I-deficient IECs, our findings suggest new avenues for treatment of epithelial injury and mucosal inflammation in IBD patients.


Asunto(s)
Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Prenilación , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/terapia , Mucosa Intestinal/patología , Ratones , Ratones Mutantes , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA