Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 65(1): 100481, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008260

RESUMEN

In addition to its antiatherogenic role, HDL reportedly modulates energy metabolism at the whole-body level. HDL functionality is associated with its structure and composition, and functional activities can differ between HDL subclasses. Therefore, we studied if HDL2 and HDL3, the two major HDL subclasses, are able to modulate energy metabolism of skeletal muscle cells. Differentiated mouse and primary human skeletal muscle myotubes were used to investigate the influences of human HDL2 and HDL3 on glucose and fatty uptake and oxidation. HDL-induced changes in lipid distribution and mRNA expression of genes related to energy substrate metabolism, mitochondrial function, and HDL receptors were studied with human myotubes. Additionally, we examined the effects of apoA-I and discoidal, reconstituted HDL particles on substrate metabolism. In mouse myotubes, HDL subclasses strongly enhanced glycolysis upon high and low glucose concentrations. HDL3 caused a minor increase in ATP-linked respiration upon glucose conditioning but HDL2 improved complex I-mediated mitochondrial respiration upon fatty acid treatment. In human myotubes, glucose metabolism was attenuated but fatty acid uptake and oxidation were markedly increased by both HDL subclasses, which also increased mRNA expression of genes related to fatty acid metabolism and HDL receptors. Finally, both HDL subclasses induced incorporation of oleic acid into different lipid classes. These results, demonstrating that HDL subclasses enhance fatty acid oxidation in human myotubes but improve anaerobic metabolism in mouse myotubes, support the role of HDL as a circulating modulator of energy metabolism. Exact mechanisms and components of HDL causing the change, require further investigation.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Animales , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Glucosa/metabolismo , ARN Mensajero/metabolismo
2.
FASEB J ; 37(11): e23209, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37779421

RESUMEN

The roles of DGAT1 and DGAT2 in lipid metabolism and insulin responsiveness of human skeletal muscle were studied using cryosections and myotubes prepared from muscle biopsies from control, athlete, and impaired glucose regulation (IGR) cohorts of men. The previously observed increases in intramuscular triacylglycerol (IMTG) in athletes and IGR were shown to be related to an increase in lipid droplet (LD) area in type I fibers in athletes but, conversely, in type II fibers in IGR subjects. Specific inhibition of both diacylglycerol acyltransferase (DGAT) 1 and 2 decreased fatty acid (FA) uptake by myotubes, whereas only DGAT2 inhibition also decreased fatty acid oxidation. Fatty acid uptake in myotubes was negatively correlated with the lactate thresholds of the respective donors. DGAT2 inhibition lowered acetate uptake and oxidation in myotubes from all cohorts whereas DGAT1 inhibition had no effect. A positive correlation between acetate oxidation in myotubes and resting metabolic rate (RMR) from fatty acid oxidation in vivo was observed. Myotubes from athletes and IGR had higher rates of de novo lipogenesis from acetate that were normalized by DGAT2 inhibition. Moreover, DGAT2 inhibition in myotubes also resulted in increased insulin-induced Akt phosphorylation. The differential effects of DGAT1 and DGAT2 inhibition suggest that the specialized role of DGAT2 in esterifying nascent diacylglycerols and de novo synthesized FA is associated with synthesis of a pool of triacylglycerol, which upon hydrolysis results in effectors that promote mitochondrial fatty acid oxidation but decrease insulin signaling in skeletal muscle cells.


Asunto(s)
Diacilglicerol O-Acetiltransferasa , Fibras Musculares Esqueléticas , Masculino , Humanos , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Glucosa/metabolismo , Insulina , Acetatos , Triglicéridos/metabolismo , Ácidos Grasos/metabolismo
3.
J Therm Biol ; 116: 103623, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37542841

RESUMEN

Transient potential (TRP) ion channels expressed in primary sensory neurons act as the initial detectors of environmental cold and heat, information which controls muscle energy expenditure. We hypothesize that non-neuronal TRPs have direct cellular responses to thermal exposure, also affecting cellular metabolism. In the present study we show expression of TRPA1, TRPM8 and TRPV1 in rat skeletal muscle and human primary myotubes by qPCR. Effects of TRP activity on metabolism in human myotubes were studied using radiolabeled glucose. FURA-2 was used for Ca2+ imaging. TRPA1, TRPM8 and TRPV1 were expressed at low levels in primary human myotubes and in m. gastrocnemius, m. soleus, and m. trapezius from rat. Activation of TRPA1 by ligustilide resulted in an increased glucose uptake and oxidation in human myotubes, whereas activation of TRPM8 by menthol and icilin significantly decreased glucose uptake and oxidation. Activation of heat sensing TRPV1 by capsaicin had no effect on glucose metabolism. Agonist-induced increases in intracellular Ca2+ levels by ligustilide and icilin in human myotubes confirmed a direct activation of TRPA1 and TRPM8, respectively. The mRNA expression of some genes involved in thermogenesis, i.e. peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), uncoupling protein (UCP) 1 and UCP3, were downregulated in human myotubes following TRPA1 activation, while the mRNA expression of TRPM8 and TRPA1 were downregulated following TRPM8 activation by menthol and icilin, respectively. Cold exposure (18 °C) of cultured myotubes followed by a short recovery period had no effect on glucose uptake and oxidation in the basal situation, however when TRPA1 and TRPM8 channels were chemically inhibited a temperature-induced difference in glucose metabolism was found. In conclusion, mRNA of TRPA1, TRPM8 and TRPV1 are expressed in rat skeletal muscle and human skeletal muscle cells. Modulation of TRPA1 and TRPM8 by chemical agents induced changes in Ca2+ levels and glucose metabolism in human skeletal muscle cells, indicating functional receptors.


Asunto(s)
Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Animales , Humanos , Ratas , Proteínas de la Membrana , Mentol/farmacología , Fibras Musculares Esqueléticas/metabolismo , ARN Mensajero , Canales de Potencial de Receptor Transitorio/metabolismo , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
4.
Mol Biol Rep ; 49(7): 6005-6017, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35364719

RESUMEN

BACKGROUND: Recent studies have highlighted that uncoupling of sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA) by sarcolipin (SLN) increases ATP consumption and contributes to heat liberation. Exploiting this thermogenic mechanism in skeletal muscle may provide an attractive strategy to counteract obesity and associated metabolic disorders. In the present study, we have investigated the role of SLN on substrate metabolism in human skeletal muscle cells. METHODS AND RESULTS: After generation of skeletal muscle cells with stable SLN knockdown (SLN-KD), cell viability, glucose and oleic acid (OA) metabolism, mitochondrial function, as well as gene expressions were determined. Depletion of SLN did not influence cell viability. However, glucose and OA oxidation were diminished in SLN-KD cells compared to control myotubes. Basal respiration measured by respirometry was also observed to be reduced in cells with SLN-KD. The metabolic perturbation in SLN-KD cells was reflected by reduced gene expression levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and forkhead box O1 (FOXO1). Furthermore, accumulation of OA was increased in cells with SLN-KD compared to control cells. These effects were accompanied by increased lipid formation and incorporation of OA into complex lipids. Additionally, formation of complex lipids and free fatty acid from de novo lipogenesis with acetate as substrate was enhanced in SLN-KD cells. Detection of lipid droplets using Oil red O staining also showed increased lipid accumulation in SLN-KD cells. CONCLUSIONS: Overall, our study sheds light on the importance of SLN in maintaining metabolic homeostasis in human skeletal muscle. Findings from the current study suggest that therapeutic strategies involving SLN-mediated futile cycling of SERCA might have significant implications in the treatment of obesity and associated metabolic disorders.


Asunto(s)
Proteolípidos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Glucosa/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares , Músculo Esquelético/metabolismo , Obesidad/genética , Proteolípidos/genética , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
5.
J Therm Biol ; 98: 102930, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34016352

RESUMEN

Proteins secreted from skeletal muscle serving a signalling role have been termed myokines. Many of the myokines are exercise factors, produced and released in response to muscle activity. Cold exposures affecting muscle may occur in recreational, occupational and therapeutic settings. Whether muscle temperature independently affects myokine profile, is still to be elucidated. We hypothesized that manipulating muscle temperature by means of external cooling would change myokine production and release. In the present study we have established new models for cold exposure of muscle in vivo and in vitro where rat hind limb or cultured human myotubes were cooled to 18 °C. After a recovery period, muscle tissue, cells and culture media were harvested for further analysis by qPCR and immunoassays. Expression of several myokine genes were significantly increased after cold exposure in both models: in rat muscle, mRNA levels of CCL2 (p = 0.04), VEGFA (p = 0.02), CXCL1 (p = 0.02) and RBM3 (p = 0.02) increased while mRNA levels of IL-6 (p = 0.03) were decreased; in human myotubes, mRNA levels of IL6 (p = 0.01), CXCL8 (p = 0.04), VEGFA (p = 0.03) and CXCL1 (p < 0.01) were significantly increased, as well as intracellular protein levels of IL-8 (CXCL8 gene product; p < 0.01). The corresponding effect on myokine secretion was not observed, on the contrary, IL-8 (p = 0.02) and VEGF (VEGFA gene product) p < 0.01) concentrations in culture media were reduced after cold exposure in vitro. In conclusion, cold exposure of muscle in vivo and in vitro had an effect on the production and release of several known exercise-related myokines. Myokine expression at the level of mRNA and protein was increased by cold exposure, whereas secretion tended to be decreased.


Asunto(s)
Frío , Citocinas/metabolismo , Músculo Esquelético/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Citocinas/genética , Femenino , Expresión Génica , Humanos , Músculo Esquelético/citología , Proteínas de Unión al ARN/genética , Ratas Endogámicas Lew , Factor A de Crecimiento Endotelial Vascular/genética
6.
Cell Tissue Res ; 382(3): 599-608, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32897419

RESUMEN

Primary human myotubes represent an alternative system to intact skeletal muscle for the study of human diseases related to changes in muscle energy metabolism. This work aimed to study if fatty acid and glucose metabolism in human myotubes in vitro were related to muscle of origin, donor gender, age, or body mass index (BMI). Myotubes from a total of 82 donors were established from three different skeletal muscles, i.e., musculus vastus lateralis, musculus obliquus internus abdominis, and musculi interspinales, and cellular energy metabolism was evaluated. Multiple linear regression analyses showed that donor age had a significant effect on glucose and oleic acid oxidation after correcting for gender, BMI, and muscle of origin. Donor BMI was the only significant contributor to cellular oleic acid uptake, whereas cellular glucose uptake did not rely on any of the variables examined. Despite the effect of age on substrate oxidation, cellular mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) did not correlate with donor age. In conclusion, donor age significantly impacts substrate oxidation in cultured human myotubes, whereas donor BMI affects cellular oleic acid uptake.


Asunto(s)
Metabolismo Energético/fisiología , Músculo Esquelético/metabolismo , Adulto , Factores de Edad , Humanos , Persona de Mediana Edad , Oxidación-Reducción , Donantes de Tejidos
7.
Pancreatology ; 20(4): 676-682, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32360002

RESUMEN

BACKGROUND: /Objectives: We aimed to metabolically compare healthy primary human pancreatic epithelial cells (hPEC) to a pancreatic cancer cell line (PANC-1) and explore the effect on energy metabolism of exposing primary human myotubes to conditioned medium from hPEC and PANC-1 cells. METHODS: Differences in metabolism were examined with radiolabeled glucose, oleic acid and lactic acid, and by qPCR. Mass spectrometry-based proteomics was used to study global protein secretion from the two cell types. Pathway analyses were performed. RESULTS: PANC-1 cells tended to have higher glucose uptake, production of lactic acid, and glucose oxidation compared to hPEC cells. PANC-1 cells had higher uptake but lower oxidation of oleic acid, and mitochondrial reserve capacity from oleic acid was lower in PANC-1 cells. These differences in energy metabolism were reflected by differences in gene expressions and pathway analyses of the secretome. Conditioned medium from PANC-1 cells attenuated oleic acid oxidation in primary human myotubes. CONCLUSIONS: Metabolic characterization of the PANC-1 cells revealed a glycolytic phenotype since they had an active glucose oxidation. Furthermore, PANC-1 cells showed a lower oleic acid oxidation and secreted a high amount of proteins into conditioned medium that also induced a reduced oleic acid oxidation in myotubes.


Asunto(s)
Células Epiteliales/fisiología , Fibras Musculares Esqueléticas/metabolismo , Ácido Oléico/metabolismo , Páncreas/citología , Neoplasias Pancreáticas/patología , Transporte Biológico/efectos de los fármacos , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Humanos , Ácido Láctico , Mitocondrias/metabolismo , Oxidación-Reducción
8.
Diabetologia ; 61(9): 2054-2065, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29754289

RESUMEN

AIMS/HYPOTHESIS: Wingless-type (Wnt) inducible signalling pathway protein-1 (WISP1) has been recently identified as a proinflammatory adipokine. We examined whether WISP1 expression and circulating levels are altered in type 2 diabetes and whether WISP1 affects insulin signalling in muscle cells and hepatocytes. METHODS: Serum and visceral adipose tissue (VAT) biopsies, for analysis of circulating WISP1 levels by ELISA and WISP1 mRNA expression by real-time quantitative RT-PCR, were collected from normal-weight men (control group, n = 33) and obese men with (n = 46) and without type 2 diabetes (n = 56) undergoing surgery. Following incubation of primary human skeletal muscle cells (hSkMCs) and murine AML12 hepatocytes with WISP1 and insulin, insulin signalling was analysed by western blotting. The effect of WISP1 on insulin-stimulated glycogen synthesis and gluconeogenesis was investigated in hSkMCs and murine hepatocytes, respectively. RESULTS: Circulating WISP1 levels were higher in obese men (independent of diabetes status) than in normal-weight men (mean [95% CI]: 70.8 [55.2, 86.4] ng/l vs 42.6 [28.5, 56.6] ng/l, respectively; p < 0.05). VAT WISP1 expression was 1.9-fold higher in obese men vs normal-weight men (p < 0.05). Circulating WISP1 levels were positively associated with blood glucose in the OGTT and circulating haem oxygenase-1 and negatively associated with adiponectin levels. In hSkMCs and AML12 hepatocytes, recombinant WISP1 impaired insulin action by inhibiting phosphorylation of insulin receptor, Akt and its substrates glycogen synthase kinase 3ß, FOXO1 and p70S6 kinase, and inhibiting insulin-stimulated glycogen synthesis and suppression of gluconeogenic genes. CONCLUSIONS/INTERPRETATION: Circulating WISP1 levels and WISP1 expression in VAT are increased in obesity independent of glycaemic status. Furthermore, WISP1 impaired insulin signalling in muscle and liver cells.


Asunto(s)
Proteínas CCN de Señalización Intercelular/metabolismo , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Glucemia/metabolismo , Proteínas CCN de Señalización Intercelular/sangre , Ensayo de Inmunoadsorción Enzimática , Humanos , Grasa Intraabdominal/metabolismo , Ratones , Fosforilación , Proteínas Proto-Oncogénicas/sangre , Receptor de Insulina/metabolismo , Transducción de Señal
9.
Crit Care Med ; 46(3): e206-e212, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29240609

RESUMEN

OBJECTIVES: Propofol may adversely affect the function of mitochondria and the clinical features of propofol infusion syndrome suggest that this may be linked to propofol-related bioenergetic failure. We aimed to assess the effect of therapeutic propofol concentrations on energy metabolism in human skeletal muscle cells. DESIGN: In vitro study on human skeletal muscle cells. SETTINGS: University research laboratories. SUBJECTS: Patients undergoing hip surgery and healthy volunteers. INTERVENTIONS: Vastus lateralis biopsies were processed to obtain cultured myotubes, which were exposed to a range of 1-10 µg/mL propofol for 96 hours. MEASUREMENTS AND MAIN RESULTS: Extracellular flux analysis was used to measure global mitochondrial functional indices, glycolysis, fatty acid oxidation, and the functional capacities of individual complexes of electron transfer chain. In addition, we used [1-C]palmitate to measure fatty acid oxidation and spectrophotometry to assess activities of individual electron transfer chain complexes II-IV. Although cell survival and basal oxygen consumption rate were only affected by 10 µg/mL of propofol, concentrations as low as 1 µg/mL reduced spare electron transfer chain capacity. Uncoupling effects of propofol were mild, and not dependent on concentration. There was no inhibition of any respiratory complexes with low dose propofol, but we found a profound inhibition of fatty acid oxidation. Addition of extra fatty acids into the media counteracted the propofol effects on electron transfer chain, suggesting inhibition of fatty acid oxidation as the causative mechanism of reduced spare electron transfer chain capacity. Whether these metabolic in vitro changes are observable in other organs and at the whole-body level remains to be investigated. CONCLUSIONS: Concentrations of propofol seen in plasma of sedated patients in ICU cause a significant inhibition of fatty acid oxidation in human skeletal muscle cells and reduce spare capacity of electron transfer chain in mitochondria.


Asunto(s)
Hipnóticos y Sedantes/efectos adversos , Músculo Esquelético/efectos de los fármacos , Propofol/efectos adversos , Anciano , Células Cultivadas , Metabolismo Energético , Humanos , Hipnóticos y Sedantes/farmacología , Técnicas In Vitro , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Propofol/farmacología
10.
J Lipid Res ; 58(11): 2147-2161, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28822960

RESUMEN

Lipid droplet (LD) coating proteins are essential for the formation and stability of intracellular LDs. Plin2 is an abundant LD coating protein in skeletal muscle, but its importance for muscle function is unclear. We show that myotubes established from Plin2-/- mice contain reduced content of LDs and accumulate less oleic acid (OA) in triacylglycerol (TAG) due to elevated LD hydrolysis in comparison with Plin2+/+ myotubes. The reduced ability to store TAG in LDs in Plin2-/- myotubes is accompanied by a shift in energy metabolism. Plin2-/- myotubes are characterized by increased oxidation of OA, lower glycogen synthesis, and reduced glucose oxidation in comparison with Plin2+/+ myotubes, perhaps reflecting competition between FAs and glucose as part of the Randle cycle. In accord with these metabolic changes, Plin2-/- myotubes have elevated expression of Ppara and Ppargc1a, transcription factors that stimulate expression of genes important for FA oxidation, whereas genes involved in glucose uptake and oxidation are suppressed. Loss of Plin2 had no impact on insulin-stimulated Akt phosphorylation. Our results suggest that Plin2 is essential for protecting the pool of skeletal muscle LDs to avoid an uncontrolled hydrolysis of stored TAG and to balance skeletal muscle energy metabolism.


Asunto(s)
Metabolismo Energético/genética , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Lipólisis/genética , Fibras Musculares Esqueléticas/metabolismo , Perilipina-2/deficiencia , Perilipina-2/genética , Animales , Células Cultivadas , Eliminación de Gen , Regulación de la Expresión Génica/genética , Ratones , Fibras Musculares Esqueléticas/citología , Oxidación-Reducción
11.
Biochim Biophys Acta ; 1851(9): 1194-201, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25819461

RESUMEN

A decrease in skeletal muscle lipolysis and hormone sensitive-lipase (HSL) expression has been linked to insulin resistance in obesity. The purpose of this study was to identify potential intrinsic defects in lipid turnover and lipolysis in myotubes established from obese and type 2 diabetic subjects. Lipid trafficking and lipolysis were measured by pulse-chase assay with radiolabeled substrates in myotubes from non-obese/non-diabetic (lean), obese/non-diabetic (obese) and obese/diabetic (T2D) subjects. Lipolytic protein content and level of Akt phosphorylation were measured by Western blot. HSL was overexpressed by adenovirus-mediated gene delivery. Myotubes established from obese and T2D subjects had lower lipolysis (-30-40%) when compared to lean, using oleic acid as precursor. Similar observations were also seen for labelled glycerol. Incorporation of oleic acid into diacylglycerol (DAG) and free fatty acid (FFA) level was lower in T2D myotubes, and acetate incorporation into FFA and complex lipids was also lower in obese and/or T2D subjects. Both protein expression of HSL (but not ATGL) and changes in DAG during lipolysis were markedly lower in cells from obese and T2D when compared to lean subjects. Insulin-stimulated glycogen synthesis (-60%) and Akt phosphorylation (-90%) were lower in myotubes from T2D, however, overexpression of HSL in T2D myotubes did not rescue the diabetic phenotype. In conclusion, intrinsic defects in lipolysis and HSL expression co-exist with reduced insulin action in myotubes from obese T2D subjects. Despite reductions in intramyocellular lipolysis and HSL expression, overexpression of HSL did not rescue defects in insulin action in skeletal myotubes from obese T2D subjects.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Insulina/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Obesidad/metabolismo , Esterol Esterasa/metabolismo , Transporte Biológico , Radioisótopos de Carbono , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Diglicéridos/metabolismo , Femenino , Regulación de la Expresión Génica , Glicerol/metabolismo , Glucógeno/metabolismo , Humanos , Insulina/metabolismo , Lipólisis/efectos de los fármacos , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Obesidad/complicaciones , Obesidad/genética , Obesidad/patología , Ácido Oléico/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Esterol Esterasa/genética
12.
Growth Factors ; 34(5-6): 217-223, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28209091

RESUMEN

Previous studies in rat hepatocytes have shown that the MEK/ERK, PI3K/Akt and p38 pathways are all involved in the activation of DNA synthesis by EGF and that sustained activation of MEK/ERK is required. Here, we show that although HGF stimulated DNA synthesis and activated signaling in the same manner as EGF, the contribution of the signaling pathways to the induction of DNA synthesis differed. While HGF-induced DNA synthesis was dependent on MEK/ERK, with no significant contribution from PI3K/Akt, p38 suppressed HGF-induced DNA synthesis. The p38 inhibitor SB203580 increased HGF-induced DNA synthesis and enhanced the phosphorylation of ERK. In contrast, SB203580 decreased EGF-induced ERK phosphorylation. This suggests that p38 has distinct effects on DNA synthesis induced by EGF and HGF. Due to differential regulation of signaling through the MEK/ERK pathway, p38 acts as an enhancer of EGF-induced DNA synthesis and as a suppressor of HGF-induced DNA synthesis.


Asunto(s)
Replicación del ADN , Factor de Crecimiento de Hepatocito/farmacología , Hepatocitos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Imidazoles/farmacología , Sistema de Señalización de MAP Quinasas , Masculino , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Ratas , Ratas Wistar , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
13.
Bioorg Med Chem ; 24(6): 1191-203, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26874397

RESUMEN

Thio-ether fatty acids (THEFAs), including the parent 2-(tetradecylthio)acetic acid (TTA), are modified fatty acids (FAs) that have profound effects on lipid metabolism given that they are blocked for ß-oxidation, and able to act as peroxisome proliferator-activated receptor (PPAR) agonists. Therefore, TTA in particular has been tested clinically for its therapeutic potential against metabolic syndrome related disorders. Here, we describe the preparation of THEFAs based on the TTA scaffold with either a double or a triple bond. These are tested in cultured human skeletal muscle cells (myotubes), either as free acid or following esterification as phospholipids, lysophospholipids or monoacylglycerols. Metabolic effects are assessed in terms of cellular bioavailabilities in myotubes, by FA substrate uptake and oxidation studies, and gene regulation studies with selected PPAR-regulated genes. We note that the inclusion of a triple bond promotes THEFA-mediated FA oxidation. Furthermore, esterification of THEFAs as lysophospholipids also promotes FA oxidation effects. Given that the apparent clinical benefits of TTA administration were offset by dose limitation and poor bioavailability, we discuss the possibility that a selection of our latest THEFAs and THEFA-containing lipids might be able to fulfill the therapeutic potential of the parent TTA while minimizing required doses for efficacy, side-effects and adverse reactions.


Asunto(s)
Éteres/farmacología , Ácidos Grasos/química , Ácidos Grasos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Compuestos de Sulfhidrilo/farmacología , Relación Dosis-Respuesta a Droga , Éteres/síntesis química , Éteres/química , Ácidos Grasos/síntesis química , Humanos , Estructura Molecular , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química
14.
J Oral Pathol Med ; 45(6): 425-32, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26602326

RESUMEN

BACKGROUND: The glycerophospholipid lysophosphatidic acid (LPA), which is present in most tissues and in high concentrations in saliva, may exert profound effects on oral cancer cells. We have investigated mitogenic signalling induced by LPA in the two oral carcinoma cell lines, D2 and E10, focusing on the role of EGFR transactivation and downstream pathways. METHODS: Two oral squamous carcinoma cell lines, D2 and E10, were analysed for effects of LPA on signalling pathways and induction of DNA synthesis. Pathway activation was investigated by examining phosphorylation of signalling proteins and by the use of specific pathway inhibitors. RESULTS: The D2 cells had higher levels of activated signalling proteins and higher DNA synthesis activity in the basal condition than E10 cells. EGF did not induce proliferation in D2 cells, whereas LPA induced proliferation in both cell lines, by mechanisms depending on EGFR transactivation. Release of EGFR ligands was involved in basal and LPA-induced proliferation in both D2 and E10 cells. The proliferation in D2 cells was dependent on the PI3K/Akt pathway, but not the MEK/ERK pathway. In E10 cells, the PI3K/Akt, MEK/ERK and p38 pathways were all involved in the proliferation. CONCLUSION: Transactivation of EGFR is required for LPA-induced DNA synthesis in D2 and E10 cells. Our results also show that although proliferation of oral carcinoma cells is regulated by several pathways, and differentially in E10 and D2 cells, the PI3K pathway has a crucial role in both cell lines.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , ADN de Neoplasias/biosíntesis , Neoplasias de Cabeza y Cuello/metabolismo , Lisofosfolípidos/farmacología , Neoplasias de la Boca/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Replicación del ADN/fisiología , ADN de Neoplasias/genética , Activación Enzimática , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Fosforilación , Carcinoma de Células Escamosas de Cabeza y Cuello , Activación Transcripcional/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Am J Physiol Cell Physiol ; 308(7): C548-56, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25608533

RESUMEN

Exercise improves insulin sensitivity and oxidative capacity in skeletal muscles. However, the effect of exercise on substrate oxidation is less clear in obese and type 2 diabetic subjects than in lean subjects. We investigated glucose and lipid metabolism and gene expression after 48 h with low-frequency electrical pulse stimulation (EPS), as an in vitro model of exercise, in cultured myotubes established from lean nondiabetic subjects and severely obese subjects (BMI ≥ 40 kg/m(2)) with and without type 2 diabetes. EPS induced an increase in insulin sensitivity but did not improve lipid oxidation in myotubes from severely obese subjects. Thus, EPS-induced increases in insulin sensitivity and lipid oxidation were positively and negatively correlated to BMI of the subjects, respectively. EPS enhanced oxidative capacity of glucose in myotubes from all subjects. Furthermore, EPS reduced mRNA expression of slow fiber-type marker (MYH7) in myotubes from diabetic subjects; however, the protein expression of this marker was not significantly affected by EPS in either of the donor groups. On the contrary, mRNA levels of interleukin-6 (IL-6) and IL-8 were unaffected by EPS in myotubes from diabetic subjects, while IL-6 mRNA expression was increased in myotubes from nondiabetic subjects. EPS-stimulated mRNA expression levels of MYH7, IL-6, and IL-8 correlated negatively with subjects' HbA1c and/or fasting plasma glucose, suggesting an effect linked to the diabetic phenotype. Taken together, these data show that myotubes from different donor groups respond differently to EPS, suggesting that this effect may reflect the in vivo characteristics of the donor groups.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Ejercicio Físico/fisiología , Fibras Musculares Esqueléticas/metabolismo , Obesidad/metabolismo , Índice de Severidad de la Enfermedad , Delgadez/metabolismo , Adulto , Células Cultivadas , Diabetes Mellitus Tipo 2/diagnóstico , Estimulación Eléctrica/métodos , Femenino , Humanos , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana Edad , Obesidad/diagnóstico , Delgadez/diagnóstico
16.
Bioorg Med Chem ; 22(1): 643-50, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24268541

RESUMEN

The generic, synthetic oxysterol 22(S)-hydroxycholesterol (22SHC) has shown antagonistic effects towards liver X receptor (LXR) in vitro and promising effects on plasma triacylglycerol level and body weight-gain in animal studies. On the contrary, the endogenic LXR agonist 22(R)-hydroxycholesterol (22RHC) and synthetic LXR agonists convincingly have shown agonistic effects on genes involved in lipogenesis, and inhibitory effects on cell proliferation in vitro and in vivo. We hypothesized that the carbon side chain containing the hydroxyl group at the 22-position was a pharmacophore affecting these opposite effects on LXR. This prompted us to initiate a rational drug design incorporating the 22-hydroxylated 20-27 cholesterol moiety into cholesterol-mimicking building blocks. The two enantiomers of the 22-hydroxylated 20-27 cholesterol moiety were synthesized with an excellent enantiomeric excess and the stereochemistry are supported by X-ray crystallography. Molecular modelling of the new compounds showed promising LXR selectivity (LXRß over LXRα) and initial in vitro biological evaluation in human myotubes showed that compound 16b had agonistic effects on the gene expression of SCD1 and increased lipogenesis.


Asunto(s)
Hidroxicolesteroles/síntesis química , Expresión Génica , Humanos , Hidroxicolesteroles/química , Hidroxicolesteroles/metabolismo , Modelos Moleculares , Relación Estructura-Actividad
17.
Acta Physiol (Oxf) ; 240(7): e14156, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711362

RESUMEN

BACKGROUND: Skeletal muscle adapts in reaction to contractile activity to efficiently utilize energy substrates, primarily glucose and free fatty acids (FA). Inactivity leads to atrophy and a change in energy utilization in individuals with spinal cord injury (SCI). The present study aimed to characterize possible inactivity-related differences in the energy metabolism between skeletal muscle cells cultured from satellite cells isolated 1- and 12-months post-SCI. METHODS: To characterize inactivity-related disturbances in spinal cord injury, we studied skeletal muscle cells isolated from SCI subjects. Cell cultures were established from biopsy samples from musculus vastus lateralis from subjects with SCI 1 and 12 months after the injury. The myoblasts were proliferated and differentiated into myotubes before fatty acid and glucose metabolism were assessed and gene and protein expressions were measured. RESULTS: The results showed that glucose uptake was increased, while oleic acid oxidation was reduced at 12 months compared to 1 month. mRNA expressions of PPARGC1α, the master regulator of mitochondrial biogenesis, and MYH2, a determinant of muscle fiber type, were significantly reduced at 12 months. Proteomic analysis showed reduced expression of several mitochondrial proteins. CONCLUSION: In conclusion, skeletal muscle cells isolated from immobilized subjects 12 months compared to 1 month after SCI showed reduced fatty acid metabolism and reduced expression of mitochondrial proteins, indicating an increased loss of oxidative capacity with time after injury.


Asunto(s)
Fibras Musculares Esqueléticas , Traumatismos de la Médula Espinal , Fibras Musculares Esqueléticas/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Humanos , Células Cultivadas , Adulto , Masculino , Oxidación-Reducción , Femenino , Glucosa/metabolismo , Factores de Tiempo , Ácidos Grasos/metabolismo , Metabolismo Energético , Persona de Mediana Edad
18.
Biochim Biophys Acta ; 1821(10): 1323-33, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22796147

RESUMEN

Development of insulin resistance is positively associated with dietary saturated fatty acids and negatively associated with monounsaturated fatty acids. To clarify aspects of this difference we have compared the metabolism of oleic (OA, monounsaturated) and palmitic acids (PA, saturated) in human myotubes. Human myotubes were treated with 100µM OA or PA and the metabolism of [(14)C]-labeled fatty acid was studied. We observed that PA had a lower lipolysis rate than OA, despite a more than two-fold higher protein level of adipose triglyceride lipase after 24h incubation with PA. PA was less incorporated into triacylglycerol and more incorporated into phospholipids after 24h. Supporting this, incubation with compounds modifying lipolysis and reesterification pathways suggested a less influenced PA than OA metabolism. In addition, PA showed a lower accumulation than OA, though PA was oxidized to a relatively higher extent than OA. Gene set enrichment analysis revealed that 24h of PA treatment upregulated lipogenesis and fatty acid ß-oxidation and downregulated oxidative phosphorylation compared to OA. The differences in lipid accumulation and lipolysis between OA and PA were eliminated in combination with eicosapentaenoic acid (polyunsaturated fatty acid). In conclusion, this study reveals that the two most abundant fatty acids in our diet are partitioned toward different metabolic pathways in muscle cells, and this may be relevant to understand the link between dietary fat and skeletal muscle insulin resistance.


Asunto(s)
Tejido Adiposo/enzimología , Lipasa/análisis , Lipólisis , Músculo Esquelético/metabolismo , Ácido Oléico/metabolismo , Ácido Palmítico/metabolismo , Adulto , Células Cultivadas , Ácido Eicosapentaenoico/farmacología , Glicerol/metabolismo , Humanos , Redes y Vías Metabólicas , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa
19.
Cell Tissue Res ; 354(3): 671-82, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23749200

RESUMEN

Satellite cells can be isolated from skeletal muscle biopsies, activated to proliferating myoblasts and differentiated into multinuclear myotubes in culture. These cell cultures represent a model system for intact human skeletal muscle and can be modulated ex vivo. The advantages of this system are that the most relevant genetic background is available for the investigation of human disease (as opposed to rodent cell cultures), the extracellular environment can be precisely controlled and the cells are not immortalized, thereby offering the possibility of studying innate characteristics of the donor. Limitations in differentiation status (fiber type) of the cells and energy metabolism can be improved by proper treatment, such as electrical pulse stimulation to mimic exercise. This review focuses on the way that human myotubes can be employed as a tool for studying metabolism in skeletal muscles, with special attention to changes in muscle energy metabolism in obesity and type 2 diabetes.


Asunto(s)
Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Diferenciación Celular/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Obesidad/metabolismo
20.
Front Bioeng Biotechnol ; 11: 1130693, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034250

RESUMEN

Introduction: Skeletal muscle is a major contributor to whole-body energy homeostasis and the utilization of fatty acids and glucose. At present, 2D cell models have been the most used cellular models to study skeletal muscle energy metabolism. However, the transferability of the results to in vivo might be limited. This project aimed to develop and characterize a skeletal muscle 3D cell model (myospheres) as an easy and low-cost tool to study molecular mechanisms of energy metabolism. Methods and results: We demonstrated that human primary myoblasts form myospheres without external matrix support and carry structural and molecular characteristics of mature skeletal muscle after 10 days of differentiation. We found significant metabolic differences between the 2D myotubes model and myospheres. In particular, myospheres showed increased lipid oxidative metabolism than the 2D myotubes model, which oxidized relatively more glucose and accumulated more oleic acid. Discussion and conclusion: These analyses demonstrate model differences that can have an impact and should be taken into consideration for studying energy metabolism and metabolic disorders in skeletal muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA