Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Am Chem Soc ; 141(13): 5169-5181, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30855951

RESUMEN

DNA-encoded chemical libraries are increasingly used in pharmaceutical research because they enable the rapid discovery of synthetic protein ligands. Here we explored whether target-class focused DNA-encoded chemical libraries can be cost-effective tools to achieve robust screening productivity for a series of proteins. The study revealed that a DNA-encoded library designed for NAD+-binding pockets (NADEL) effectively sampled the chemical binder space of enzymes with ADP-ribosyltransferase activity. The extracted information directed the synthesis of inhibitors for several enzymes including PARP15 and SIRT6. The high dissimilarity of NADEL screening fingerprints for different proteins translated into inhibitors that showed selectivity for their target. The discovery of patterns of enriched structures for six out of eight tested proteins is remarkable for a library of 58 302 DNA-tagged structures and illustrates the prospect of focused DNA-encoded libraries as economic alternatives to large library platforms.


Asunto(s)
ADP Ribosa Transferasas/antagonistas & inhibidores , ADN/química , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Sirtuinas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , ADP Ribosa Transferasas/metabolismo , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Sirtuinas/metabolismo , Bibliotecas de Moléculas Pequeñas/química
2.
Bioorg Med Chem Lett ; 28(11): 2050-2054, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29748053

RESUMEN

A series of diaryl ethers were designed and synthesized to discern the structure activity relationships against the two closely related mono-(ADP-ribosyl)transferases PARP10 and PARP14. Structure activity studies identified 8b as a sub-micromolar inhibitor of PARP10 with ∼15-fold selectivity over PARP14. In addition, 8k and 8m were discovered to have sub-micromolar potency against PARP14 and demonstrated moderate selectivity over PARP10. A crystal structure of the complex of PARP14 and 8b shows binding of the compound in a novel hydrophobic pocket and explains both potency and selectivity over other PARP family members. In addition, 8b, 8k and 8m also demonstrate selectivity over PARP1. Together, this study identified novel, potent and metabolically stable derivatives to use as chemical probes for these biologically interesting therapeutic targets.


Asunto(s)
Amidas/farmacología , Diseño de Fármacos , Éteres/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Amidas/síntesis química , Amidas/química , Relación Dosis-Respuesta a Droga , Éteres/síntesis química , Éteres/química , Humanos , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Proteínas Proto-Oncogénicas/metabolismo , Relación Estructura-Actividad
3.
Bioorg Med Chem Lett ; 27(13): 2907-2911, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28495083

RESUMEN

A series of (Z)-4-(3-carbamoylphenylamino)-4-oxobut-2-enyl amides were synthesized and tested for their ability to inhibit the mono-(ADP-ribosyl)transferase, PARP14 (a.k.a. BAL-2; ARTD-8). Two synthetic routes were established for this series and several compounds were identified as sub-micromolar inhibitors of PARP14, the most potent of which was compound 4t, IC50=160nM. Furthermore, profiling other members of this series identified compounds with >20-fold selectivity over PARP5a/TNKS1, and modest selectivity over PARP10, a closely related mono-(ADP-ribosyl)transferase.


Asunto(s)
Diseño de Fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Relación Estructura-Actividad
4.
Angew Chem Int Ed Engl ; 56(1): 248-253, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27918638

RESUMEN

Poly(ADP-ribose) polymerases (PARPs) are key enzymes in a variety of cellular processes. Most small-molecule PARP inhibitors developed to date have been against PARP1, and suffer from poor selectivity. PARP14 has recently emerged as a potential therapeutic target, but its inhibitor development has trailed behind. Herein, we describe a small molecule microarray-based strategy for high-throughput synthesis, screening of >1000 potential bidentate inhibitors of PARPs, and the successful discovery of a potent PARP14 inhibitor H10 with >20-fold selectivity over PARP1. Co-crystallization of the PARP14/H10 complex indicated H10 bound to both the nicotinamide and the adenine subsites. Further structure-activity relationship studies identified important binding elements in the adenine subsite. In tumor cells, H10 was able to chemically knockdown endogenous PARP14 activities.


Asunto(s)
Descubrimiento de Drogas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Análisis por Micromatrices , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
5.
J Biol Chem ; 290(12): 7336-44, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25635049

RESUMEN

The mammalian poly(ADP-ribose) polymerase (PARP) family includes ADP-ribosyltransferases with diphtheria toxin homology (ARTD). Most members have mono-ADP-ribosyltransferase activity. PARP13/ARTD13, also called zinc finger antiviral protein, has roles in viral immunity and microRNA-mediated stress responses. PARP13 features a divergent PARP homology domain missing a PARP consensus sequence motif; the domain has enigmatic functions and apparently lacks catalytic activity. We used x-ray crystallography, molecular dynamics simulations, and biochemical analyses to investigate the structural requirements for ADP-ribosyltransferase activity in human PARP13 and two of its functional partners in stress granules: PARP12/ARTD12, and PARP15/BAL3/ARTD7. The crystal structure of the PARP homology domain of PARP13 shows obstruction of the canonical active site, precluding NAD(+) binding. Molecular dynamics simulations indicate that this closed cleft conformation is maintained in solution. Introducing consensus side chains in PARP13 did not result in 3-aminobenzamide binding, but in further closure of the site. Three-dimensional alignment of the PARP homology domains of PARP13, PARP12, and PARP15 illustrates placement of PARP13 residues that deviate from the PARP family consensus. Introducing either one of two of these side chains into the corresponding positions in PARP15 abolished PARP15 ADP-ribosyltransferase activity. Taken together, our results show that PARP13 lacks the structural requirements for ADP-ribosyltransferase activity.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Dedos de Zinc , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Homología de Secuencia de Aminoácido
7.
J Biol Chem ; 287(29): 24077-81, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22661712

RESUMEN

ADP-ribosylation is involved in the regulation of DNA repair, transcription, and other processes. The 18 human ADP-ribose transferases with diphtheria toxin homology include ARTD1/PARP1, a cancer drug target. Knowledge of other family members may guide therapeutics development and help evaluate potential drug side effects. Here, we present the crystal structure of human ARTD15/PARP16, a previously uncharacterized enzyme. ARTD15 features an α-helical domain that packs against its transferase domain without making direct contact with the NAD(+)-binding crevice or the donor loop. Thus, this novel domain does not resemble the regulatory domain of ARTD1. ARTD15 displays auto-mono(ADP-ribosylation) activity and is affected by canonical poly(ADP-ribose) polymerase inhibitors. These results add to a framework that will facilitate research on a medically important family of enzymes.


Asunto(s)
Cristalografía por Rayos X/métodos , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Poli(ADP-Ribosa) Polimerasas/genética , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Homología de Secuencia de Aminoácido
8.
J Biol Chem ; 286(6): 4511-6, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21131357

RESUMEN

Perturbed cell adhesion mechanisms are crucial for tumor invasion and metastasis. A cell adhesion protein, TSLC1 (tumor suppressor in lung cancer 1), is inactivated in a majority of metastatic cancers. DAL-1 (differentially expressed in adenocarcinoma of the lung protein), another tumor suppressor, binds through its FERM domain to the TSLC1 C-terminal, 4.1 glycophorin C-like, cytoplasmic domain. However, the molecular basis for this interaction is unknown. Here, we describe the crystal structure of a complex between the DAL-1 FERM domain and a portion of the TSLC1 cytoplasmic domain. DAL-1 binds to TSLC1 through conserved residues in a well defined hydrophobic pocket in the structural C-lobe of the DAL-1 FERM domain. From the crystal structure, it is apparent that Tyr(406) and Thr(408) in the TSLC1 cytoplasmic domain form the most important interactions with DAL-1, and this was also confirmed by surface plasmon resonance studies. Our results refute earlier exon deletion experiments that indicated that glycophorin C interacts with the α-lobe of 4.1 FERM domains.


Asunto(s)
Moléculas de Adhesión Celular/química , Inmunoglobulinas/química , Proteínas de la Membrana/química , Proteínas Supresoras de Tumor/química , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Cristalografía por Rayos X , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
9.
Nat Commun ; 12(1): 1296, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637753

RESUMEN

Despite the immense importance of enzyme-substrate reactions, there is a lack of general and unbiased tools for identifying and prioritizing substrate proteins that are modified by the enzyme on the structural level. Here we describe a high-throughput unbiased proteomics method called System-wide Identification and prioritization of Enzyme Substrates by Thermal Analysis (SIESTA). The approach assumes that the enzymatic post-translational modification of substrate proteins is likely to change their thermal stability. In our proof-of-concept studies, SIESTA successfully identifies several known and novel substrate candidates for selenoprotein thioredoxin reductase 1, protein kinase B (AKT1) and poly-(ADP-ribose) polymerase-10 systems. Wider application of SIESTA can enhance our understanding of the role of enzymes in homeostasis and disease, opening opportunities to investigate the effect of post-translational modifications on signal transduction and facilitate drug discovery.


Asunto(s)
Enzimas/química , Enzimas/metabolismo , Procesamiento Proteico-Postraduccional , Carcinoma , Descubrimiento de Drogas , Enzimas/genética , Células HCT116 , Humanos , Espectrometría de Masas , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especificidad por Sustrato , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/genética
10.
Nat Commun ; 11(1): 5199, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060572

RESUMEN

Protein ADP-ribosylation is a reversible post-translational modification that regulates important cellular functions. The identification of modified proteins has proven challenging and has mainly been achieved via enrichment methodologies. Random mutagenesis was used here to develop an engineered Af1521 ADP-ribose binding macro domain protein with 1000-fold increased affinity towards ADP-ribose. The crystal structure reveals that two point mutations K35E and Y145R form a salt bridge within the ADP-ribose binding domain. This forces the proximal ribose to rotate within the binding pocket and, as a consequence, improves engineered Af1521 ADPr-binding affinity. Its use in our proteomic ADP-ribosylome workflow increases the ADP-ribosylated protein identification rates and yields greater ADP-ribosylome coverage. Furthermore, generation of an engineered Af1521 Fc fusion protein confirms the improved detection of cellular ADP-ribosylation by immunoblot and immunofluorescence. Thus, this engineered isoform of Af1521 can also serve as a valuable tool for the analysis of cellular ADP-ribosylation under in vivo conditions.


Asunto(s)
ADP-Ribosilación/fisiología , Adenosina Difosfato Ribosa/metabolismo , Ingeniería de Proteínas/métodos , Proteínas/metabolismo , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/genética , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutagénesis , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/aislamiento & purificación , Proteómica/métodos
11.
Cell Chem Biol ; 25(12): 1547-1553.e12, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30344052

RESUMEN

Poly-ADP-ribose polymerases (PARPs1-16) play pivotal roles in diverse cellular processes. PARPs that catalyze poly-ADP-ribosylation (PARylation) are the best characterized PARP family members because of the availability of potent and selective inhibitors for these PARPs. There has been comparatively little success in developing selective small-molecule inhibitors of PARPs that catalyze mono-ADP-ribosylation (MARylation), limiting our understanding of the cellular role of MARylation. Here we describe the structure-guided design of inhibitors of PARPs that catalyze MARylation. The most selective analog, ITK7, potently inhibits the MARylation activity of PARP11, a nuclear envelope-localized PARP. ITK7 is greater than 200-fold selective over other PARP family members. Using live-cell imaging, we show that ITK7 causes PARP11 to dissociate from the nuclear envelope. These results suggest that the cellular localization of PARP11 is regulated by its catalytic activity.


Asunto(s)
Biocatálisis/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Quinazolinonas/farmacología , Células HeLa , Humanos , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Transporte de Proteínas/efectos de los fármacos , Quinazolinonas/síntesis química , Quinazolinonas/química
12.
Nat Commun ; 9(1): 3785, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224724

RESUMEN

Pseudomonas are a common cause of hospital-acquired infections that may be lethal. ADP-ribosyltransferase activities of Pseudomonas exotoxin-S and -T depend on 14-3-3 proteins inside the host cell. By binding in the 14-3-3 phosphopeptide binding groove, an amphipathic C-terminal helix of ExoS and ExoT has been thought to be crucial for their activation. However, crystal structures of the 14-3-3ß:ExoS and -ExoT complexes presented here reveal an extensive hydrophobic interface that is sufficient for complex formation and toxin activation. We show that C-terminally truncated ExoS ADP-ribosyltransferase domain lacking the amphipathic binding motif is active when co-expressed with 14-3-3. Moreover, swapping the amphipathic C-terminus with a fragment from Vibrio Vis toxin creates a 14-3-3 independent toxin that ADP-ribosylates known ExoS targets. Finally, we show that 14-3-3 stabilizes ExoS against thermal aggregation. Together, this indicates that 14-3-3 proteins activate exotoxin ADP-ribosyltransferase domains by chaperoning their hydrophobic surfaces independently of the amphipathic C-terminal segment.


Asunto(s)
Proteínas 14-3-3/química , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Proteínas 14-3-3/metabolismo , ADP Ribosa Transferasas/genética , Toxinas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas Activadoras de GTPasa/genética , Interacciones Huésped-Patógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformación Proteica , Dominios Proteicos , Pseudomonas aeruginosa/patogenicidad , Saccharomyces cerevisiae/genética
13.
J Med Chem ; 60(4): 1262-1271, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28001384

RESUMEN

Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Tanquirasas/antagonistas & inhibidores , Animales , Bencimidazoles/química , Bencimidazoles/farmacología , Células HEK293 , Humanos , Indazoles/química , Indazoles/farmacología , Modelos Moleculares , Fenantrenos/química , Fenantrenos/farmacología , Ftalazinas/química , Ftalazinas/farmacología , Piperazinas/química , Piperazinas/farmacología , Piperidinas/química , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Tanquirasas/metabolismo
14.
Structure ; 24(5): 789-796, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27112597

RESUMEN

Sister chromatid cohesion, formed by the cohesin protein complex, is essential for chromosome segregation. In order for cohesion to be established, the cohesin subunit SMC3 needs to be acetylated by a homolog of the ESCO1/Eco1 acetyltransferases, the enzymatic mechanism of which has remained unknown. Here we report the crystal structure of the ESCO1 acetyltransferase domain in complex with acetyl-coenzyme A, and show by SAXS that ESCO1 is a dimer in solution. The structure reveals an active site that lacks a potential catalytic base side chain. However, mutation of glutamate 789, a surface residue that is close to the automodification target lysine 803, strongly reduces autoacetylation of ESCO1. Moreover, budding yeast Smc3 mutated at the conserved residue D114, adjacent to the cohesion-activating acetylation site K112,K113, cannot be acetylated in vivo. This indicates that ESCO1 controls cohesion through substrate-assisted catalysis. Thus, this study discloses a key mechanism for cohesion establishment.


Asunto(s)
Acetilcoenzima A/metabolismo , Acetiltransferasas/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Proteínas de Saccharomyces cerevisiae/química , Acetiltransferasas/metabolismo , Dominio Catalítico , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Humanos , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Eur J Med Chem ; 95: 546-51, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25847771

RESUMEN

Protein ADP-ribosylation is a post-translational modification involved in DNA repair, protein degradation, transcription regulation, and epigenetic events. Intracellular ADP-ribosylation is catalyzed predominantly by ADP-ribosyltransferases with diphtheria toxin homology (ARTDs). The most prominent member of the ARTD family, poly(ADP-ribose) polymerase-1 (ARTD1/PARP1) has been a target for cancer drug development for decades. Current PARP inhibitors are generally non-selective, and inhibit the mono-ADP-ribosyltransferases with low potency. Here we describe the synthesis of acylated amino benzamides and screening against the mono-ADP-ribosyltransferases ARTD7/PARP15, ARTD8/PARP14, ARTD10/PARP10, and the poly-ADP-ribosyltransferase ARTD1/PARP1. The most potent compound inhibits ARTD10 with sub-micromolar IC50.


Asunto(s)
ADP Ribosa Transferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora
17.
J Med Chem ; 47(9): 2171-5, 2004 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15084115

RESUMEN

The discovery and synthesis of dihydrobenzoxathiins as potent, ERalpha subtype selective ligands are described. The most active analogue, 4-D, was found to be 50-fold selective in a competitive binding assay and 100-fold selective in a transactivation assay in HEK-293 cells. The alpha selectivity was postulated to lie in the interaction of the sulfur atom of the benzoxathiin ring with the two discriminating residues in the binding pocket of the receptor isoforms.


Asunto(s)
Oxatiinas/síntesis química , Moduladores Selectivos de los Receptores de Estrógeno/síntesis química , Animales , Sitios de Unión , Unión Competitiva , Línea Celular , Cristalografía por Rayos X , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Femenino , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Tamaño de los Órganos/efectos de los fármacos , Oxatiinas/química , Oxatiinas/farmacología , Receptores de Estrógenos/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/química , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Estereoisomerismo , Relación Estructura-Actividad , Activación Transcripcional , Útero/efectos de los fármacos
19.
J Med Chem ; 56(23): 9556-68, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24188023

RESUMEN

The racemic 3-(4-oxo-3,4-dihydroquinazolin-2-yl)-N-[1-(pyridin-2-yl)ethyl]propanamide, 1, has previously been identified as a potent but unselective inhibitor of diphtheria toxin-like ADP-ribosyltransferase 3 (ARTD3). Herein we describe synthesis and evaluation of 55 compounds in this class. It was found that the stereochemistry is of great importance for both selectivity and potency and that substituents on the phenyl ring resulted in poor solubility. Certain variations at the meso position were tolerated and caused a large shift in the binding pose. Changes to the ethylene linker that connects the quinazolinone to the amide were also investigated but proved detrimental to binding. By combination of synthetic organic chemistry and structure-based design, two selective inhibitors of ARTD3 were discovered.


Asunto(s)
ADP Ribosa Transferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Quinazolinonas/síntesis química , Inhibidores Enzimáticos/farmacología , Proteínas Ligadas a GPI/antagonistas & inhibidores , Humanos , Modelos Moleculares , Quinazolinonas/farmacología , Solubilidad , Estereoisomerismo , Relación Estructura-Actividad
20.
Structure ; 21(3): 462-75, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23473667

RESUMEN

ADP-ribosyltransferases (ARTs) catalyze the transfer of ADP-ribose from NAD(+) onto substrates. Some ARTs generate in an iterative process ADP-ribose polymers that serve as adaptors for distinct protein domains. Other ARTs, exemplified by ARTD10, function as mono-ADP-ribosyltransferases, but it has been unclear whether this modification occurs in cells and how it is read. We observed that ARTD10 colocalized with ARTD8 and defined its macrodomains 2 and 3 as readers of mono-ADP-ribosylation both in vitro and in cells. The crystal structures of these two ARTD8 macrodomains and isothermal titration calorimetry confirmed their interaction with ADP-ribose. These macrodomains recognized mono-ADP-ribosylated ARTD10, but not poly-ADP-ribosylated ARTD1. This distinguished them from the macrodomain of macroH2A1.1, which interacted with poly- but not mono-ADP-ribosylated substrates. Moreover, Ran, an ARTD10 substrate, was also read by ARTD8 macrodomains. This identifies readers of mono-ADP-ribosylated proteins, defines their structures, and demonstrates the presence of this modification in cells.


Asunto(s)
ADP Ribosa Transferasas/química , Adenosina Difosfato Ribosa/química , Histonas/química , Proteína de Unión al GTP ran/química , ADP Ribosa Transferasas/genética , Animales , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/genética , Células HEK293 , Histonas/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Cinética , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Termodinámica , Proteína de Unión al GTP ran/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA