Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 614(7948): 440-444, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792742

RESUMEN

In a flat band superconductor, the charge carriers' group velocity vF is extremely slow. Superconductivity therein is particularly intriguing, being related to the long-standing mysteries of high-temperature superconductors1 and heavy-fermion systems2. Yet the emergence of superconductivity in flat bands would appear paradoxical, as a small vF in the conventional Bardeen-Cooper-Schrieffer theory implies vanishing coherence length, superfluid stiffness and critical current. Here, using twisted bilayer graphene3-7, we explore the profound effect of vanishingly small velocity in a superconducting Dirac flat band system8-13. Using Schwinger-limited non-linear transport studies14,15, we demonstrate an extremely slow normal state drift velocity vn ≈ 1,000 m s-1 for filling fraction ν between -1/2 and -3/4 of the moiré superlattice. In the superconducting state, the same velocity limit constitutes a new limiting mechanism for the critical current, analogous to a relativistic superfluid16. Importantly, our measurement of superfluid stiffness, which controls the superconductor's electrodynamic response, shows that it is not dominated by the kinetic energy but instead by the interaction-driven superconducting gap, consistent with recent theories on a quantum geometric contribution8-12. We find evidence for small Cooper pairs, characteristic of the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover17-19, with an unprecedented ratio of the superconducting transition temperature to the Fermi temperature exceeding unity and discuss how this arises for ultra-strong coupling superconductivity in ultra-flat Dirac bands.

2.
Phys Rev Lett ; 125(3): 036803, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32745392

RESUMEN

Helical conductors with spin-momentum locking are promising platforms for Majorana fermions. Here we report observation of two topologically distinct phases supporting helical edge states in charge neutral Bernal-stacked tetralayer graphene in Hall bar and Corbino geometries. As the magnetic field B_{⊥} and out-of-plane displacement field D are varied, we observe a phase diagram consisting of an insulating phase and two metallic phases, with 0, 1, and 2 helical edge states, respectively. These phases are accounted for by a theoretical model that relates their conductance to spin-polarization plateaus. Transitions between them arise from a competition among interlayer hopping, electrostatic and exchange interaction energies. Our work highlights the complex competing symmetries and the rich quantum phases in few-layer graphene.

3.
Nat Commun ; 15(1): 761, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278796

RESUMEN

Two-dimensional (2D) materials have drawn immense interests in scientific and technological communities, owing to their extraordinary properties and their tunability by gating, proximity, strain and external fields. For electronic applications, an ideal 2D material would have high mobility, air stability, sizable band gap, and be compatible with large scale synthesis. Here we demonstrate air stable field effect transistors using atomically thin few-layer PdSe2 sheets that are sandwiched between hexagonal BN (hBN), with large saturation current > 350 µA/µm, and high field effect mobilities of ~ 700 and 10,000 cm2/Vs at 300 K and 2 K, respectively. At low temperatures, magnetotransport studies reveal unique octets in quantum oscillations that persist at all densities, arising from 2-fold spin and 4-fold valley degeneracies, which can be broken by in-plane and out-of-plane magnetic fields toward quantum Hall spin and orbital ferromagnetism.

4.
Toxics ; 11(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37235257

RESUMEN

Evidence from epidemiological studies suggests that chronic arsenic exposure may be associated with a higher incidence of hypertension in the population. However, the effect of arsenic exposure on blood pressure remains unexplored in different populations, regions, and regarding arsenic biomarkers. This study investigated 233 arsenicosis patients and 84 participants from a non-arsenic-exposed area to explore the relationship between arsenic exposure and blood pressure and the occurrence of hypertension and wide pulse pressure (WPP) in patients with coal-burning arsenicosis. The results show that arsenic exposure is related to an increased incidence of hypertension and WPP in the arsenicosis population, primarily due to an induced increase in systolic blood pressure (SBP) and pulse pressure (PP) (OR = 1.47, 1.65, all p < 0.05). The dose-effect relationships between monomethylated arsenicals (MMA), trivalent arsenic (As3+), hypertension, and WWP were characterized following trend analyses (all p-trend < 0.05) in the coal-burning arsenicosis population. After adjusting for age, gender, body mass index (BMI), smoking, and alcohol usage, compared with low-level exposure, the high level of MMA exposure increases the risk of hypertension by 1.99 times (CI: 1.04-3.80) and the WPP by 2.42 times (CI: 1.23-4.72). Similarly, the high level of As3+ exposure increases the hypertension risk by 3.68 times (CI: 1.86-7.30) and the WPP by 3.84 times (CI: 1.93-7.64). Together, the results revealed that urinary MMA and As3+ levels are mainly associated with increased SBP and induce a higher incidence of hypertension and WPP. This study provides preliminary population evidence that cardiovascular-related adverse events such as hypertension and WPP ought to be noticed in the coal-burning arsenicosis population.

5.
Sci Adv ; 5(9): eaaw9770, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31799399

RESUMEN

The emergence of flat bands and correlated behaviors in "magic angle" twisted bilayer graphene (tBLG) has sparked tremendous interest, though its many aspects are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of ~0.93°, which is smaller than the magic angle by 15%. At an electron concentration of ±5 electrons/moiré unit cell, we observe a narrow resistance peak with an activation energy gap ~0.1 meV. This indicates additional correlated insulating state, and is consistent with theory predicting a high-energy flat band. At doping of ±12 electrons/moiré unit cell we observe resistance peaks arising from the Dirac points in the spectrum. Our results reveal that the "magic" range of tBLG is in fact larger than what is previously expected, and provide a wealth of new information to help decipher the strongly correlated phenomena observed in tBLG.

6.
Nanoscale ; 8(42): 18221-18227, 2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27759757

RESUMEN

Nd2Fe14B/α-Fe nanocomposite magnets are prepared through electron beam exposure with a greatly reduced annealing time of 0.1 s. This is by far the most effective approach due to the effect of an extremely high heating rate featuring a rapid thermal process. The impact that the rapid thermal process has on crystallization is expounded by the introduction of the Landau model and Langevin dynamical simulations. The change of crystallization sequence from the α-Fe phase preceding the Nd2Fe14B phase under conventional annealing conditions, to synergetic crystallization under electron beam conditions is investigated. Synergetic crystallization results in more intense interaction between the α-Fe phase and the Nd2Fe14B phase in order to refine the microstructure as the fraction of Fe increases within our addition range. Improved uniformity, and shifts in the microstructure and distribution of the α-Fe phase contribute to the improvement of the magnetic properties. Compared with conventional furnace annealing ones, the magnetic properties of samples under electron beam exposure conditions are improved. For the Nd10Fe83.3B6.2Nb0.2Ga0.3 alloy, coercivity is enhanced from 4.56 kOe to 6.73 kOe, remanence ratio increases from 0.75 to 0.79, and a superior squareness of the hysteresis loop is achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA