Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 856
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2312150121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412127

RESUMEN

African swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear. Here, we found that the spleen reveals the most severe pathological manifestation with the highest viral loads among various organs in pigs during ASFV infection. By using single-cell-RNA-sequencing technology and multiple methods, we determined that macrophages and monocytes are the major cell types infected by ASFV in the spleen, showing high viral-load heterogeneity. A rare subpopulation of immature monocytes represents the major population infected at late infection stage. ASFV causes massive death of macrophages, but shifts its infection into these monocytes which significantly arise after the infection. The apoptosis, interferon response, and antigen-presentation capacity are inhibited in these monocytes which benefits prolonged infection of ASFV in vivo. Until now, the role of immature monocytes as an important target by ASFV has been overlooked due to that they do not express classical monocyte marker CD14. The present study indicates that the shift of viral infection from macrophages to the immature monocytes is critical for maintaining prolonged ASFV infection in vivo. This study sheds light on ASFV tropism, replication, and infection dynamics, and elicited immune response, which may instruct future research on antiviral strategies.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Bazo/patología , Replicación Viral , Macrófagos/patología
2.
J Virol ; : e0058524, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869319

RESUMEN

Senecavirus A (SVA), a picornavirus, causes vesicular diseases and epidemic transient neonatal losses in swine, resulting in a multifaceted economic impact on the swine industry. SVA counteracts host antiviral response through multiple strategies facilitatng viral infection and transmission. However, the mechanism of how SVA modulates interferon (IFN) response remains elusive. Here, we demonstrate that SVA 3C protease (3Cpro) blocks the transduction of Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway to antagonize type I IFN response. Mechanistically, 3Cpro selectively cleaves and degrades STAT1 and STAT2 while does not target JAK1, JAK2, and IRF9, through its protease activity. Notably, SVA 3Cpro cleaves human and porcine STAT1 on a Leucine (L)-Aspartic acid (D) motif, specifically L693/D694. In the case of STAT2, two cleavage sites were identified: glutamine (Q) 707 was identified in both human and porcine, while the second cleavage pattern differed, with residues 754-757 (Valine-Leucine-Glutamine-Serine motifs) in human STAT2 and Q758 in porcine STAT2. These cleavage patterns by SVA 3Cpro partially differ from previously reported classical motifs recognized by other picornaviral 3Cpro, highlighting the distinct characteristics of SVA 3Cpro. Together, these results reveal a mechanism by which SVA 3Cpro antagonizes IFN-induced antiviral response but also expands our knowledge about the substrate recognition patterns for picornaviral 3Cpro.IMPORTANCESenecavirus A (SVA), the only member in the Senecavirus genus within the Picornaviridae family, causes vesicular diseases in pigs that are clinically indistinguishable from foot-and-mouth disease (FMD), a highly contagious viral disease listed by the World Organization for Animal Health (WOAH). Interferon (IFN)-mediated antiviral response plays a pivotal role in restricting and controlling viral infection. Picornaviruses evolved numerous strategies to antagonize host antiviral response. However, how SVA modulates the JAK-STAT signaling pathway, influencing the type I IFN response, remains elusive. Here, we identify that 3Cpro, a protease of SVA, functions as an antagonist for the IFN response. 3Cpro utilizes its protease activity to cleave STAT1 and STAT2, thereby diminishing the host IFN response to promote SVA infection. Our findings underscore the significance of 3Cpro as a key virulence factor in the antagonism of the type I signaling pathway during SVA infection.

3.
J Immunol ; 210(4): 442-458, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36602826

RESUMEN

African swine fever is one of the most serious viral diseases that affects domestic and wild pigs. The causative agent, African swine fever virus (ASFV), has evolved sophisticated immune evasion mechanisms that target both innate and adaptive immune responses. However, the underlying molecular mechanisms have not been fully understood. Here, we report that ASFV E184L protein inhibits host innate immune response via targeting the stimulator of IFN genes (STING)-mediated signaling pathway in both human embryonic kidney HEK-293T cells and porcine pulmonary alveolar macrophages. E184L interacts with STING, impairing dimerization and oligomerization of STING but not affecting its puncta formation at the perinuclear region. Furthermore, E184L disrupts STING-TBK1-IRF3 complex formation, leading to inhibition of STING phosphorylation, and IRF3 dimerization and nuclear translocation. The 1-20 aa region in E184L is essential for E184L-STING interaction and blocking IL-1ß and type I IFN production. Deletion of E184L in ASFV considerably impairs antagonistic function of the virus in suppression of the STING-mediated antiviral response, an effect that is reversible by introduction of E184L. Importantly, the virulence of mutant ASFV lacking E184L is reduced in pigs compared with its parental virus due to induction of higher IFN production in vivo. Our findings indicate that ASFV E184L is an important antagonist of IFN signaling to evade host innate immune antiviral responses, which improves our understanding of immune evasion mechanisms of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Humanos , Antivirales/metabolismo , Inmunidad Innata , Porcinos , Proteínas Virales , Replicación Viral , Proteínas de la Membrana/metabolismo , Interferones/biosíntesis
4.
Genomics ; 116(3): 110831, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38513875

RESUMEN

Hepatitis B virus (HBV) infection is a major etiology of hepatocellular carcinoma (HCC). An interesting question is how different are the molecular and phenotypic profiles between HBV-infected (HBV+) and non-HBV-infected (HBV-) HCCs? Based on the publicly available multi-omics data for HCC, including bulk and single-cell data, and the data we collected and sequenced, we performed a comprehensive comparison of molecular and phenotypic features between HBV+ and HBV- HCCs. Our analysis showed that compared to HBV- HCCs, HBV+ HCCs had significantly better clinical outcomes, higher degree of genomic instability, higher enrichment of DNA repair and immune-related pathways, lower enrichment of stromal and oncogenic signaling pathways, and better response to immunotherapy. Furthermore, in vitro experiments confirmed that HBV+ HCCs had higher immunity, PD-L1 expression and activation of DNA damage response pathways. This study may provide insights into the profiles of HBV+ and HBV- HCCs, and guide rational therapeutic interventions for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Virus de la Hepatitis B , Neoplasias Hepáticas , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/genética , Humanos , Virus de la Hepatitis B/genética , Fenotipo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Hepatitis B/virología , Hepatitis B/complicaciones , Hepatitis B/genética , Inestabilidad Genómica , Reparación del ADN , Multiómica
5.
J Biol Chem ; 299(6): 104767, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142221

RESUMEN

African swine fever, caused by a large icosahedral DNA virus (African swine fever virus, ASFV), is a highly contagious disease in domestic and feral swine, thus posing a significant economic threat to the global swine industry. Currently, there are no effective vaccines or the available methods to control ASFV infection. Attenuated live viruses with deleted virulence factors are considered to be the most promising vaccine candidates; however, the mechanism by which these attenuated viruses confer protection is unclear. Here, we used the Chinese ASFV CN/GS/2018 as a backbone and used homologous recombination to generate a virus in which MGF110-9L and MGF360-9L, two genes antagonize host innate antiviral immune response, were deleted (ASFV-ΔMGF110/360-9L). This genetically modified virus was highly attenuated in pigs and provided effective protection of pigs against parental ASFV challenge. Importantly, we found ASFV-ΔMGF110/360-9L infection induced higher expression of Toll-like receptor 2 (TLR2) mRNA compared with parental ASFV as determined by RNA-Seq and RT-PCR analysis. Further immunoblotting results showed that parental ASFV and ASFV-ΔMGF110/360-9L infection inhibited Pam3CSK4-triggered activating phosphorylation of proinflammatory transcription factor NF-κB subunit p65 and phosphorylation of NF-κB inhibitor IκBα levels, although NF-κB activation was higher in ASFV-ΔMGF110/360-9L-infected cells compared with parental ASFV-infected cells. Additionally, we show overexpression of TLR2 inhibited ASFV replication and the expression of ASFV p72 protein, whereas knockdown of TLR2 had the opposite effect. Our findings suggest that the attenuated virulence of ASFV-ΔMGF110/360-9L might be mediated by increased NF-κB and TLR2 signaling.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas Virales , Animales , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/patogenicidad , Formación de Anticuerpos/inmunología , Eliminación de Gen , FN-kappa B/genética , Porcinos , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Transcriptoma , Proteínas Virales/genética , Proteínas Virales/inmunología , Replicación Viral/inmunología
6.
Small ; : e2401987, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805737

RESUMEN

Alternative strategies to design sustainable-element-based electrocatalysts enhancing oxygen evolution reaction (OER) kinetics are demanded to develop affordable yet high-performance water-electrolyzers for green hydrogen production. Here, it is demonstrated that the spontaneous-spin-polarized 2D π-d conjugated framework comprising abundant elements of nickel and iron with a ratio of Ni:Fe = 1:4 with benzenehexathiol linker (BHT) can improve OER kinetics by its unique electronic property. Among the bimetallic NiFex:y-BHTs with various ratios with Ni:Fe = x:y, the NiFe1:4-BHT exhibits the highest OER activity. The NiFe1:4-BHT shows a specific current density of 140 A g-1 at the overpotential of 350 mV. This performance is one of the best activities among state-of-the-art non-precious OER electrocatalysts and even comparable to that of the platinum-group-metals of RuO2 and IrO2. The density functional theory calculations uncover that introducing Ni into the homometallic Fe-BHT (e.g., Ni:Fe = 0:1) can emerge a spontaneous-spin-polarized state. Thus, this material can achieve improved OER kinetics with spin-polarization which previously required external magnetic fields. This work shows that a rational design of 2D π-d conjugated frameworks can be a powerful strategy to synthesize promising electrocatalysts with abundant elements for a wide spectrum of next-generation energy devices.

7.
J Virol ; 97(5): e0022823, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37162350

RESUMEN

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a transboundary infectious disease of domestic pigs and wild boars, resulting in significant swine production losses. Currently, no effective commercial ASF vaccines or therapeutic options are available. A previous study has shown that deletions of ASFV MGF110-9L and MGF505-7R genes (ASFV-Δ110-9L/505-7R) attenuated virulence in pigs and provided complete protection against parental lethal ASFV CN/GS/2018 (wild-type ASFV [ASFV-WT]) challenge, but the underlying mechanism is unclear. This study found that ASFV-Δ110-9L/505-7R weakened TBK1 degradation compared with ASFV-WT through RNA sequencing (RNA-seq) and Western blotting analyses. Furthermore, we confirmed that ASFV-Δ110-9L/505-7R blocked the degradation of TBK1 through the autophagy pathway. We also identified that the downregulation of an autophagy-related protein PIK3C2B was involved in the inhibition of TBK1 degradation induced by ASFV-Δ110-9L/505-7R. Additionally, we also confirmed that PIK3C2B promoted ASFV-Δ110-9L/505-7R replication in vitro. Together, this study elucidated a novel mechanism of virulence change of ASFV-Δ110-9L/505-7R, revealing a new mechanism of ASF live attenuated vaccines (LAVs) and providing theoretical guidance for the development of ASF vaccines. IMPORTANCE African swine fever (ASF) is a contagious and lethal hemorrhagic disease of pigs caused by the African swine fever virus (ASFV), leading to significant economic consequences for the global pig industry. The development of an effective and safe ASF vaccine has been unsuccessful. Previous studies have shown that live attenuated vaccines (LAVs) of ASFV are the most effective vaccine candidates to prevent ASF. Understanding the host responses caused by LAVs of ASFV is important in optimizing vaccine design and diversifying the resources available to control ASF. Recently, our laboratory found that the live attenuated ASFV-Δ110-9L/505-7R provided complete protection against parental ASFV-WT challenge. This study further demonstrated that ASFV-Δ110-9L/505-7R inhibits TBK1 degradation mediated by an autophagy activator PIK3C2B to increase type I interferon production. These results revealed an important mechanism for candidate vaccine ASFV-Δ110-9L/505-7R, providing strategies for exploring the virulence of multigene-deleted live attenuated ASFV strains and the development of vaccines.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Interferón Tipo I , Vacunas Virales , Animales , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/genética , Interferón Tipo I/metabolismo , Sus scrofa , Porcinos , Vacunas Atenuadas , Genes Virales
8.
J Virol ; 97(4): e0024723, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37017515

RESUMEN

The African swine fever virus (ASFV) has caused a devastating pandemic in domestic and wild swine, causing economic losses to the global swine industry. Recombinant live attenuated vaccines are an attractive option for ASFV treatment. However, safe and effective vaccines against ASFV are still scarce, and more high-quality experimental vaccine strains need to be developed. In this study, we revealed that deletion of the ASFV genes DP148R, DP71L, and DP96R from the highly virulent isolate ASFV CN/GS/2018 (ASFV-GS) substantially attenuated virulence in swine. Pigs infected with 104 50% hemadsorbing doses of the virus with these gene deletions remained healthy during the 19-day observation period. No ASFV infection was detected in contact pigs under the experimental conditions. Importantly, the inoculated pigs were protected against homologous challenges. Additionally, RNA sequence analysis showed that deletion of these viral genes induced significant upregulation of the host histone H3.1 gene (H3.1) and downregulation of the ASFV MGF110-7L gene. Knocking down the expression of H3.1 resulted in high levels of ASFV replication in primary porcine macrophages in vitro. These findings indicate that the deletion mutant virus ASFV-GS-Δ18R/NL/UK is a novel potential live attenuated vaccine candidate and one of the few experimental vaccine strains reported to induce full protection against the highly virulent ASFV-GS virus strain. IMPORTANCE Ongoing outbreaks of African swine fever (ASF) have considerably damaged the pig industry in affected countries. Thus, a safe and effective vaccine is important to control African swine fever spread. Here, an ASFV strain with three gene deletions was developed by knocking out the viral genes DP148R (MGF360-18R), NL (DP71L), and UK (DP96R). The results showed that the recombinant virus was completely attenuated in pigs and provided strong protection against parental virus challenge. Additionally, no viral genomes were detected in the sera of pigs housed with animals infected with the deletion mutant. Furthermore, transcriptome sequencing (RNA-seq) analysis revealed significant upregulation of histone H3.1 in virus-infected macrophage cultures and downregulation of the ASFV MGF110-7L gene after viral DP148R, UK, and NL deletion. Our study provides a valuable live attenuated vaccine candidate and potential gene targets for developing strategies for anti-ASFV treatment.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Eliminación de Gen , Genes Virales , Vacunas Virales , Factores de Virulencia , Animales , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/patogenicidad , Células Cultivadas , Genes Virales/genética , Histonas/genética , Porcinos , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Factores de Virulencia/genética
9.
Plant Physiol ; 192(3): 1836-1857, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36805285

RESUMEN

Drought stress substantially reduces the productivity of apple plants and severely restricts the development of apple industry. Malus sieversii, wild apples with excellent drought resistance, is a valuable wild resource for a rootstock improvement of cultivated apple (Malus domestica). miRNAs and their targets play essential roles in plant growth and stress responses, but their roles in drought stress responses in apple are unknown. Here, we demonstrate that microRNA156ab is upregulated in M. sieversii in response to drought stress. Overexpressing msi-miR156ab promoted auxin accumulation, maintained the growth of apple plants, and increased plant resistance to osmotic stress. Antioxidant enzyme activities and proline contents were also increased in miR156ab-OE transgenic apple lines, which improved drought resistance. The squamosa promoter binding protein-like transcription factor MsSPL13 is the target of msi-miR156ab, as demonstrated by 5'-RACE and dual luciferase assays. Heterologous expression of MsSPL13 decreased auxin contents and inhibited growth in Arabidopsis (Arabidopsis thaliana) under normal and stress conditions. The activities of antioxidant enzymes were also suppressed in MsSPL13-OE transgenic Arabidopsis, reducing drought resistance. We showed that MsSPL13 regulates the expression of the auxin-related genes MsYUCCA5, PIN-FORMED7 (MsPIN7), and Gretchen Hagen3-5 (MsGH3-5) by binding to the GTAC cis-elements in their promoters, thereby regulating auxin metabolism. Finally, we demonstrated that the miR156ab-SPL13 module is involved in mediating the difference in auxin metabolism and stress responses between M. sieversii and M26 (M. domestica) rootstocks. Overall, these findings reveal that the miR156ab-SPL13 module enhances drought stress tolerance in apples by regulating auxin metabolism and antioxidant enzyme activities.


Asunto(s)
Arabidopsis , Malus , Malus/metabolismo , Resistencia a la Sequía , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Sequías , Ácidos Indolacéticos/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
10.
Nanotechnology ; 35(12)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38100834

RESUMEN

Graphene nanoribbon woven fabrics (GNWFs) with excellent mechanical properties are promising for ballistic armor materials. The dynamic response of single-layer and bilayer GNWFs under nano-projectile impact at high-speed (4-5 km s-1) is investigated by molecular dynamics simulations. Results show that the woven structure is determined by the bandwidth and gap spacing, which influences the deformation/fracture and motion coupling effects of the crossed nanoribbons and the ballistic performance of GNWF. Owing to the perturbation of the van der Waals (vdW) interface between nanoribbons, the specific penetration energy of GNWFs reaches 16.02 MJ kg-1, which is much higher than that of single-layer graphene (10.80 MJ kg-1) and bilayer graphene (10.07 MJ kg-1). The peculiarities of woven structure minimize the damage of GNWFs, on the one hand, the reversibility of vdW interactions and the entanglement of nanoribbons provide GNWFs a certain self-healing ability. On the other hand, the porous nanostructure of twist-stacked bilayer GNWFs tends to be uniform and dense with the twist angle, which improves the impact resistance. This study provides more understanding of the ballistic properties of GNWFs and the design of nano-fabrics based on two-dimensional materials.

11.
Appl Microbiol Biotechnol ; 108(1): 350, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809284

RESUMEN

The African swine fever virus (ASFV) has the ability to infect pigs and cause a highly contagious acute fever that can result in a mortality rate as high as 100%. Due to the viral epidemic, the pig industry worldwide has suffered significant financial setbacks. The absence of a proven vaccine for ASFV necessitates the development of a sensitive and reliable serological diagnostic method, enabling laboratories to effectively and expeditiously detect ASFV infection. In this study, four strains of monoclonal antibodies (mAbs) against p72, namely, 5A1, 4C4, 8A9, and 5E10, were generated through recombinant expression of p72, the main capsid protein of ASFV, and immunized mice with it. Epitope localization was performed by truncated overlapping polypeptides. The results indicate that 5A1 and 4C4 recognized the amino acid 20-39 aa, 8A9 and 5E10 are recognized at 263-282 aa, which is consistent with the reported 265-280 aa epitopes. Conserved analysis revealed 20-39 aa is a high conservation of the epitopes in the ASFV genotypes. Moreover, a blocking ELISA assay for detection ASFV antibody based on 4C4 monoclonal antibody was developed and assessed. The receiver-operating characteristic (ROC) was performed to identify the best threshold value using 87 negative and 67 positive samples. The established test exhibited an area under the curve (AUC) of 0.9997, with a 95% confidence interval ranging from 99.87 to 100%. Furthermore, the test achieved a diagnostic sensitivity of 100% (with a 95% confidence interval of 95.72 to 100%) and a specificity of 98.51% (with a 95% confidence interval of 92.02 to 99.92%) when the threshold was set at 41.97%. The inter- and intra-batch coefficient of variation were below 10%, demonstrating the exceptional repeatability of the method. This method can detect the positive standard serum at a dilution as high as 1:512. Subsequently, an exceptional blocking ELISA assay was established with high diagnostic sensitivity and specificity, providing a novel tool for detecting ASFV antibodies. KEY POINTS: • Four strains of ASFV monoclonal antibodies against p72 were prepared and their epitopes were identified. • Blocking ELISA method was established based on monoclonal antibody 4C4 with an identified conservative epitope. • The established blocking ELISA method has a good effect on the detection of ASFV antibody.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Anticuerpos Monoclonales , Anticuerpos Antivirales , Proteínas de la Cápside , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Animales , Anticuerpos Monoclonales/inmunología , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Porcinos , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Ratones , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Ratones Endogámicos BALB C , Sensibilidad y Especificidad , Epítopos/inmunología
12.
BMC Psychiatry ; 24(1): 422, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840083

RESUMEN

BACKGROUND: Mind wandering is a common phenomenon in daily life. However, the manifestations and cognitive correlates of mind wandering in different subclinical populations remain unclear. In this study, these aspects were examined in individuals with schizotypal traits and individuals with depressive symptoms, i.e., subclinical populations of patients with schizophrenia and depression. METHODS: Forty-two individuals with schizotypal traits, 42 individuals with subclinical depression, and 42 controls were recruited to complete a mind wandering thought sampling task (state level) and a mind wandering questionnaire (trait level). Measures of rumination and cognitive functions (attention, inhibition, and working memory) were also completed by participants. RESULTS: Both subclinical groups exhibited more state and trait mind wandering than did the control group. Furthermore, individuals with schizotypal traits demonstrated more trait mind wandering than individuals with subclinical depression. Rumination, sustained attention, and working memory were associated with mind wandering. In addition, mind wandering in individuals with subclinical depression can be accounted for by rumination or attention, while mind wandering in individuals with high schizotypal traits cannot be accounted for by rumination, attention, or working memory. CONCLUSIONS: The results suggest that individuals with high schizotypal traits and subclinical depression have different patterns of mind wandering and mechanisms. These findings have implications for understanding the unique profile of mind wandering in subclinical individuals.


Asunto(s)
Atención , Depresión , Memoria a Corto Plazo , Trastorno de la Personalidad Esquizotípica , Humanos , Masculino , Femenino , Trastorno de la Personalidad Esquizotípica/psicología , Trastorno de la Personalidad Esquizotípica/fisiopatología , Atención/fisiología , Memoria a Corto Plazo/fisiología , Depresión/psicología , Adulto , Adulto Joven , Pensamiento/fisiología , Rumiación Cognitiva/fisiología , Encuestas y Cuestionarios , Adolescente
13.
Graefes Arch Clin Exp Ophthalmol ; 262(5): 1507-1517, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37943331

RESUMEN

PURPOSE: The aim of this study was to evaluate whether UVA-light-activated riboflavin-induced collagen crosslinking (UVA-CXL) can maintain the function of filtering blebs after trabeculectomy (TRAB) in rabbits. METHODS: Thirty-six healthy rabbits were randomized to one of the following groups with 12 rabbits in each group: Trabeculectomy group (TRAB group), trabeculectomy combined with CXL group (CXL group), and trabeculectomy combined with MMC group (MMC group). Six rabbits of each group were performed with intraocular pressure (IOP), optical coherence tomography (OCT), and OCT angiography (OCTA). Bleb structure was observed via hematoxylin & eosin (H&E) and Masson staining. Immunohistochemistry, proteomic study, western blot, and tensile test were performed between CXL group and the control. In vitro, cell viability was evaluated by CCK-8 and Calcein/PI staining. TRPV4 and VEGF-a expression levels were measured by Q-PCR. Ca2+ concentration was observed with Fluo-4 AM. RESULTS: The IOP and bleb median survival day were significantly modified in CXL (5.92 ± 0.32 mmHg and 15.5 days) than TRAB group (7.50 ± 0.43 mmHg and 9 days). The bleb area and height increased. CXL inhibited vascularization, and vascularization peaked at postoperative day (POD) 14 and then decreased gradually. In proteomic analyses, Z disc, actin filament binding, and sarcomere organization were significantly enriched. CXL inhibited scleral stress‒strain in tensile tests. Compared with TRAB group, TRPV4 expression was significantly increased, but VEGF-a and TGF-ß1 levels were reduced in the CXL group in western blot. Meanwhile, TRPV4 expression colocalized with CD31. In vitro, CXL inhibited HUVECs cell viability. After CXL, expression level of TRPV4 was increased and calcium influx was activated, but VEGF-a was decreased in HUVECs. CONCLUSIONS: This study demonstrates that intraoperative UV-RF CXL can significantly improve the success rate of TRAB via inhibiting filtering bleb vascularization. CXL increased sclera stiffness, in turn, induced TRPV4 activation, thus contributing to vascular endothelial cells suppression.

14.
J Biopharm Stat ; : 1-23, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363805

RESUMEN

There has been an increasing use of master protocols in oncology clinical trials because of its efficiency to accelerate cancer drug development and flexibility to accommodate multiple substudies. Depending on the study objective and design, a master protocol trial can be a basket trial, an umbrella trial, a platform trial, or any other form of trials in which multiple investigational products and/or subpopulations are studied under a single protocol. Master protocols can use external data and evidence (e.g. external controls) for treatment effect estimation, which can further improve efficiency of master protocol trials. This paper provides an overview of different types of external controls and their unique features when used in master protocols. Some key considerations in master protocols with external controls are discussed including construction of estimands, assessment of fit-for-use real-world data, and considerations for different types of master protocols. Similarities and differences between regular randomized controlled trials and master protocols when using external controls are discussed. A targeted learning-based causal roadmap is presented which constitutes three key steps: (1) define a target statistical estimand that aligns with the causal estimand for the study objective, (2) use an efficient estimator to estimate the target statistical estimand and its uncertainty, and (3) evaluate the impact of causal assumptions on the study conclusion by performing sensitivity analyses. Two illustrative examples for master protocols using external controls are discussed for their merits and possible improvement in causal effect estimation.

15.
Parasitol Res ; 123(1): 108, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38263530

RESUMEN

Enterocytozoon bieneusi and Blastocystis may cause diarrhea in humans and various animals. However, little information is available regarding the prevalence and genetic diversity of E. bieneusi and Blastocystis in donkeys. To fill this gap, we molecularly assessed E. bieneusi and Blastocystis in fecal samples from donkeys (n = 815) in Shanxi Province, north China. The overall prevalence of E. bieneusi and Blastocystis in donkeys was 8.1% and 0.2%, respectively. Region and age were risk factors associated with E. bieneusi infection in donkeys. Three internal transcribed spacer (ITS) genotypes of E. bieneusi were identified in the current study, including two previously described genotypes (D and Henan-IV) and one novel genotype (named SXD1). Of which, genotype D was found to be the most prevalent. Phylogenetic analysis demonstrated that the three genotypes belonged to group 1, implying a potential of zoonotic transmission. Multilocus sequence typing showed that 19, 15, 13, and 22 types were identified at the loci MS1, MS3, MS4, and MS7, respectively, forming six multilocus genotypes (MLGs) distributed in the genotype D. One Blastocystis subtype (ST33) was identified, which has previously been reported only in horses. This is the first molecular-based description of E. bieneusi and Blastocystis infections in donkeys in Shanxi Province, north China, contributing to a better understanding of transmission dynamics and molecular epidemiological characteristics of the two intestinal protozoa.


Asunto(s)
Blastocystis , Enterocytozoon , Humanos , Caballos , Animales , Equidae , Filogenia , Prevalencia , China , Genotipo
16.
Molecules ; 29(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38999070

RESUMEN

To investigate the control mechanisms of NOx precursors and the synergistic effects of composite catalysts during proline pyrolysis, a systematic series of experiments was conducted utilizing composite catalysts with varying Fe-Ca ratios. Product distribution analysis was employed to elucidate the catalysts' mechanisms in reducing NOx precursor emissions. The synergistic interactions between Fe and Ca were quantitatively assessed through comparative theoretical and experimental release calculations. The results indicate that an increase in the Fe content in the catalyst led to a rise in amine concentrations from 0.9% to 2.95%, implying that Fe facilitates the generation of amine-N through ring-opening and substitution reactions. When the Fe to Ca ratio was balanced at 1:1, nitrogen predominantly participated in the formation of purines via cyclization and substitution reactions. Additionally, all composite catalysts exhibited a suppressive effect on the release of NOx precursors, attributed to their significant enhancement of solid product retention. Fe-Ca composite catalyst synergistically inhibits the release of gaseous nitrogen. Notably, the strongest synergistic effect was observed with a 1:3 Fe to Ca ratio, which reduced the release of NH3 by 38.7% and HCN by 53.6% during proline pyrolysis. This study offers valuable insights into the control of NOx precursors and the optimization of nitrogen-rich biomass pyrolysis processes.

17.
Cancer Immunol Immunother ; 72(8): 2741-2755, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37119260

RESUMEN

Neoantigen vaccines constitute an emerging and promising cancer immunotherapy. However, not all neoantigens have anti-tumor activity, as poor CD4+ epitope recognition can lead to the lack of greatly limit the persistence of the CD8+ T cell response. Therefore, we designed a self-assembled nanoplatform hereinafter referred to as DNA-coupled nitrated T helper cell epitope nanoparticle (DCNP) based on DNA origami containing a nitrated CD4 + T cell epitope, which can facilitate the effective activation of neoantigen-specific CD8+ T cells. Moreover, we embedded the cytidine-phosphate-guanosine oligonucleotide (CpG ODN) motif sequence in the DNA skeleton to function as a built-in adjuvant to activate Toll-like receptor 9. DCNP can markedly improve adjuvant and neoantigen co-delivery to lymphoid organs and promote neoantigen presentation on dendritic cells. Moreover, DCNP induced robust, and long-lived neoantigen-specific CD8+ T cell responses that significantly delayed tumor growth. Further, these effects were largely dependent on the nitrated T cell epitope. Collectively, our findings indicate that DCNP is a promising platform that could improve the development of personalized therapeutic neoantigen vaccines for cancer immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Humanos , Epítopos de Linfocito T , Nitratos , Antígenos de Neoplasias , Neoplasias/tratamiento farmacológico , Linfocitos T Colaboradores-Inductores , Adyuvantes Inmunológicos , ADN , Inmunoterapia
18.
J Virol ; 96(3): e0186321, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34851144

RESUMEN

Type I interferons (IFN-Is) play a key role in host defense against virus infection, but porcine reproductive and respiratory syndrome virus (PRRSV) infection does not effectively activate IFN-I response, and the underlying molecular mechanisms are poorly characterized. In this study, a novel transcription factor of the heme oxygenase-1 (HO-1) gene, homeobox A3 (HOXA3), was screened and identified. Here, we found that HOXA3 was significantly increased during PRRSV infection. We demonstrated that HOXA3 promotes PRRSV replication by negatively regulating the HO-1 gene transcription, which is achieved by regulating IFN-I production. A detailed analysis showed that PRRSV exploits HOXA3 to suppress beta interferon (IFN-ß) and IFN-stimulated gene (ISG) expression in host cells. We also provide direct evidence that the activation of IFN-I by HO-1 depends on its interaction with IRF3. Then we further proved that a deficiency of HOXA3 promoted the HO-1-IRF3 interaction and subsequently enhanced IRF3 phosphorylation and nuclear translocation in PRRSV-infected cells. These data suggest that PRRSV uses HOXA3 to negatively regulate the transcription of the HO-1 gene to suppress the IFN-I response for immune evasion. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, causes significant worldwide economic losses in the pork industry. HOXA3 is generally considered to be an important molecule in the process of body development and cell differentiation. Here, we found that a novel transcription factor of the HO-1 gene, HOXA3, can negatively regulate the transcription of the HO-1 gene and play an important role in the suppression of IFN-I response by PRRSV. PRRSV induces the upregulation of HOXA3, which can negatively regulate HO-1 gene transcription, thereby weakening the interaction between HO-1 and IRF3 for inhibiting the type I IFN response. This study extends the function of HOXA3 and provides new insights into the PRRSV immune evasion mechanism.


Asunto(s)
Regulación de la Expresión Génica , Hemo-Oxigenasa 1/genética , Proteínas de Homeodominio/genética , Interferón Tipo I/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Animales , Sitios de Unión , Hemo-Oxigenasa 1/metabolismo , Interacciones Huésped-Patógeno/genética , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Unión Proteica , Transporte de Proteínas , Porcinos , Factores de Transcripción/metabolismo , Replicación Viral
19.
J Virol ; 96(20): e0119222, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36197109

RESUMEN

African swine fever virus (ASFV) causes significant morbidity and mortality in pigs worldwide. The lack of vaccines or therapeutic options warrants urgent further investigation. To this aim, we developed a rationally designed live attenuated ASFV-Δ110-9L/505-7R mutant based on the highly pathogenic Genotype II ASFV CN/GS/2018 backbone by deleting 2 well-characterized interferon inhibitors MGF110-9L and MGF505-7R. The mutant was slightly attenuated in vitro compared to parental ASFV but highly tolerant to genetic modifications even after 30 successive passages in vitro. Groups of 5 pigs were intramuscularly inoculated with increasing doses of the mutant, ranging from 103 to 106 hemadsorption units (HAD50). Thirty-five days later, all groups were challenged with 102 HAD50 of virulent parental ASFV. All the animals were clinically normal and devoid of clinical signs consistent with ASFV at the period of inoculation. In the virulent challenge, 2 animals from 103 HAD50-inoculated group and 1 animal from 104 HAD50-inoculated group were unprotected with severe postmortem and histological lesions. The rest of animals survived and manifested with relatively normal clinical appearance accompanied by tangible histological improvements in the extent of tissue damage. Meanwhile, antibody response, as represented by p30-specific antibody titers was positively correlated to protective efficacy, potentializing its usage as an indicator of protection. Moreover, compared to 1 dose, 2 doses provided additional protection, proving that 2 doses were better than 1 dose. The sufficiency in effectiveness supports the claim that our attenuated mutant may be a viable vaccine option with which to fight ASF. IMPORTANCE African swine fever virus (ASFV) is a causative agent of acute viral hemorrhagic disease of domestic swine which is associated with significant economic losses in the pig industry. The lack of vaccines or treatment options requires urgent further investigation. ASFV MGF110-9L and MGF505-7R, 2 well-characterized interferon inhibitors, were associated with viral virulence, host range, and immune modulation. In this study, a recombinant two-gene deletion ASFV mutant with deletion of MGF110-9L and MGF505-7R was constructed. The result showed that the mutant was safe, and also highly resistant to genetic modification even after 30 successive passages. High doses of our mutant (105 and 106 HAD50) provided sterile immunity and complete protection in a virulent challenge. Two doses were superior to 1 dose and provided additional protection. This study develops a new ASFV-specific live attenuated vaccine and may be a viable vaccine option against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Peste Porcina Clásica , Vacunas Virales , Porcinos , Animales , Vacunas Atenuadas , Interferones/genética , Proteínas Virales/genética , Antivirales , África
20.
Appl Environ Microbiol ; 89(7): e0019523, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37338363

RESUMEN

Truffles are a rare underground fungus and one of the most expensive, and sought-after kitchen ingredients in the world. Microbial ecology plays an important role in the annual growth cycle of truffles, but fungal communities in native truffle ecosystems are still largely unknown, especially for Tuber indicum from China. In this study, the spatial and temporal dynamics of soil physicochemical properties and fungal communities were described associated with four T. indicum-producing plots (TPPs) and one non-truffle-producing plot in four successive growing seasons. A total of 160 biological samples were collected, 80 of which were used for the determination of 10 soil physicochemical indices and 80 for Illumina-based analysis of the fungal microbiome. Soil physicochemical properties and fungal communities exhibited considerable seasonal variation. Ascomycetes, Basidiomycetes, and Mucormycoides dominated. The core microbiome work on the microecological changes in TPPs, and the identified core members contribute to the seasonal succession of communities. The genus Tuber occupies a central position in healthy TPPs. There was a strong correlation between soil physicochemical properties and fungal communities. The genus Tuber showed a positive correlation with Ca, Mg, and total nitrogen, but a negative correlation with total phosphorus and available potassium. This study describes the complex ecological dynamics of soil physicochemical indices and fungal communities occurring during the annual cycle of Tuber indicum, and highlights the succession of core communities in truffle plots, which contribute to better protection of native truffle ecosystems and control of mycorrhizal fungal contamination in artificial truffle plantations in China. IMPORTANCE The spatial and temporal dynamics of soil physicochemical properties and fungal communities associated with four Tuber indicum-producing plots and one non truffle producing plot in four different growing seasons are described. Soil physicochemical properties and fungal communities exhibited considerable seasonal variation. This study examines the complex ecological dynamics of soil physicochemical indices and fungal communities occurring during the annual cycle of Tuber indicum and highlights the succession of core communities in truffle plots, which contributes to better protection of native truffle ecosystems and control of mycorrhizal fungal contamination in artificial truffle plantations in China.


Asunto(s)
Ascomicetos , Micobioma , Micorrizas , Ecosistema , Estaciones del Año , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA