Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 132(2): 208-222, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656967

RESUMEN

OBJECTIVE: ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-ß1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS: Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-ß1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Daño por Reperfusión , Proteína p53 Supresora de Tumor , Animales , Ratones , Apoptosis/fisiología , Hipoxia/metabolismo , Isquemia/metabolismo , Carioferinas , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Adaptadoras Transductoras de Señales/genética
2.
Small ; : e2402980, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058214

RESUMEN

Virus-like particles (VLPs) are nanostructures composed of one or more structural proteins, exhibiting stable and symmetrical structures. Their precise compositions and dimensions provide versatile opportunities for modifications, enhancing their functionality. Consequently, VLP-based nanomaterials have gained widespread adoption across diverse domains. This review focuses on three key aspects: the mechanisms of viral capsid protein self-assembly into VLPs, design methods for constructing multifunctional VLPs, and strategies for synthesizing multidimensional nanomaterials using VLPs. It provides a comprehensive overview of the advancements in virus-inspired functional nanomaterials, encompassing VLP assembly, functionalization, and the synthesis of multidimensional nanomaterials. Additionally, this review explores future directions, opportunities, and challenges in the field of VLP-based nanomaterials, aiming to shed light on potential advancements and prospects in this exciting area of research.

3.
Vet Res ; 55(1): 9, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225617

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral pathogen with substantial economic implications for the global swine industry. The existing vaccination strategies and antiviral drugs offer limited protection. Replication of the viral RNA genome encompasses a complex series of steps, wherein a replication complex is assembled from various components derived from both viral and cellular sources, as well as from the viral genomic RNA template. In this study, we found that ZNF283, a Krüppel-associated box (KRAB) containing zinc finger protein, was upregulated in PRRSV-infected Marc-145 cells and porcine alveolar macrophages and that ZNF283 inhibited PRRSV replication and RNA synthesis. We also found that ZNF283 interacts with the viral proteins Nsp9, an RNA-dependent RNA polymerase, and Nsp10, a helicase. The main regions involved in the interaction between ZNF283 and Nsp9 were determined to be the KRAB domain of ZNF283 and amino acids 178-449 of Nsp9. The KRAB domain of ZNF283 plays a role in facilitating Nsp10 binding. In addition, ZNF283 may have an affinity for the 3' untranslated region of PRRSV. These findings suggest that ZNF283 is an antiviral factor that inhibits PRRSV infection and extend our understanding of the interactions between KRAB-containing zinc finger proteins and viruses.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Unión Proteica , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , ARN Viral/metabolismo , Dedos de Zinc , Replicación Viral
4.
Environ Res ; 258: 119460, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906451

RESUMEN

To investigate the inhibitory effects of various transition metal ions on nitrogen removal and their underlying mechanisms, the single and combined effects of Cu2+ Ni2+ and Zn2+ on Heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria Acinetobacter sp. TAC-1 were studied in a batch experiment system. The results revealed that increasing concentrations of Cu2+ and Ni2+ had a detrimental effect on the removal of ammonium nitrogen (NH4+-N) and total nitrogen (TN). Specifically, Cu2+ concentration of 10 mg/L, the TN degradation rate was 55.09%, compared to 77.60% in the control group. Cu2+ exhibited a pronounced inhibitory effect. In contrast, Zn2+ showed no apparent inhibitory effect on NH4+-N removal and even enhanced TN removal at lower concentrations. However, when the mixed ion concentration of Zn2++Ni2+ exceeded 5 mg/L, the removal rates of NH4+-N and TN were significantly reduced. Moreover, transition metal ions did not significantly impact the removal rates of chemical oxygen demand (COD). The inhibition model fitting results indicated that the inhibition sequence was Cu2+ > Zn2+ > Ni2+. Transcriptome analysis demonstrated that metal ions influence TAC-1 activity by modulating the expression of pivotal genes, including zinc ABC transporter substrate binding protein (znuA), ribosomal protein (rpsM), and chromosome replication initiation protein (dnaA) and DNA replication of TAC-1 under metal ion stress, leading to disruptions in transcription, translation, and cell membrane structure. Finally, a conceptual model was proposed by us to summarize the inhibition mechanism and possible response strategies of TAC-1 bacteria under metal ion stress, and to address the lack of understanding regarding the influence mechanism of TAC-1 on nitrogen removal in wastewater co-polluted by metal and ammonia nitrogen. The results provided practical guidance for the management of transition metal and ammonia nitrogen co-polluted water bodies, as well as the removal of high nitrogen.


Asunto(s)
Desnitrificación , Nitrificación , Acinetobacter/metabolismo , Acinetobacter/genética , Procesos Heterotróficos , Aerobiosis , Elementos de Transición/metabolismo , Nitrógeno/metabolismo , Contaminantes Químicos del Agua/metabolismo
5.
Arch Insect Biochem Physiol ; 115(2): e22088, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38349673

RESUMEN

Geranylgeranyl diphosphate synthase (GGPPS) as the short-chain prenyltransferases for catalyzing the formation of the acyclic precursor (E)-GGPP has been extensively investigated in mammals, plants, and microbes, but its functional plasticity is poorly understood in insect species. Here, a single GGPPS in leaf beetle Monolepta hieroglyphica, MhieGGPPS, was functionally investigated. Phylogenetic analysis showed that MhieGGPPS was clustered in one clade with homologs and had six conserved motifs. Molecular docking results indicated that binding sites of dimethylallyl diphosphate (DMAPP), (E)-geranyl pyrophosphate (GPP), and (E)-farnesyl pyrophosphate (FPP) were in the chain-length determination region of MhieGGPPS, respectively. In vitro, recombiant MhieGGPPS could catalyze the formation of (E)-geranylgeraniol against different combinations of substrates including isopentenyl pyrophosphate (IPP)/DMAPP, IPP/(E)-GPP, and IPP/(E)-FPP, suggesting that MhieGGPPS could not only use (E)-FPP but also (E)-GPP and DMAPP as the allylic cosubstrates. In kinetic analysis, the (E)-FPP was most tightly bound to MhieGGPPS than that of others. It was proposed that MhieGGPPS as a multifunctional enzyme is differentiated from the other GGPPSs in the animals and plants, which only accepted (E)-FPP as the allylic cosubstrate. These findings provide valuable insights into understanding the functional plasticity of GGPPS in M. hieroglyphica and the novel biosynthesis mechanism in the isoprenoid pathway.


Asunto(s)
Escarabajos , Hemiterpenos , Compuestos Organofosforados , Fosfatos de Poliisoprenilo , Sesquiterpenos , Animales , Farnesiltransferasa , Cinética , Simulación del Acoplamiento Molecular , Filogenia , Mamíferos
6.
BMC Oral Health ; 24(1): 948, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152368

RESUMEN

BACKGROUND: The prevalence of oral diseases is subject to change over time. In 2021, Guangdong Province conducted its fourth survey assessing the oral health status of individuals aged 65-74. MATERIALS AND METHODS: Evaluation criteria and potential influencing factors were identified. A sample of residents aged 65-74 from 13 designated monitoring sites in Guangdong Province was randomly selected for the study. Spearman correlation analysis was employed to investigate the clinical correlation between influencing factors and evaluation criteria. Negative binomial and zero-inflated negative binomial regression models were utilized to examine the factors influencing caries prevalence. In contrast, logistic regression was employed to identify the risk factors for caries occurrence. A p-value of ≤0.05 was considered statistically significant. RESULTS: The prevalence of caries rate of crowns, roots, and teeth were 76.36%, 52.25%, and 79.2%, respectively. Individuals with periodontal pockets exhibited a significantly higher risk of root caries. The presence of dental calculus significantly exacerbated the occurrence of crown, root, and dental caries, and increased the risk of crown and dental caries. Consuming sweet foods once or more a week notably increased the average root decayed score (D of roots), the prevalence rate of root caries, and the D score of the Decayed, Missing, and Filled teeth [DMFT] index in individuals already afflicted with this condition. Similarly, the consumption of sweetened drinks significantly elevated the risk of crown and root caries, exacerbating overall caries progression. Frequencies of manual toothbrush and toothpick cleaning showed a negative correlation with average tooth missing score (MT). In contrast, the frequency of manual/electric toothbrush and toothpick cleaning was negatively correlated with the DMFT index. Engaging in dental diagnosis and treatment behaviors significantly increased the number of filled crowns (F), MT, and DMFT scores while reducing the prevalence of dental caries. CONCLUSIONS: In Guangdong Province, caries prevalence among older individuals aged 65-74 remains substantial. Relevant professionals and institutions must provide comprehensive guidance and assistance to the older population, emphasizing the importance of reducing the consumption of sweets and sweetened beverages, adopting correct tooth brushing techniques and frequency (at least twice daily), timely treatment of periodontal diseases, conducting regular epidemiological caries surveys, and addressing economic barriers to accessing caries diagnosis and treatment services.


Asunto(s)
Caries Dental , Humanos , Caries Dental/epidemiología , China/epidemiología , Prevalencia , Anciano , Estudios Transversales , Masculino , Femenino , Factores de Riesgo , Índice CPO , Caries Radicular/epidemiología
7.
J Proteome Res ; 22(4): 1172-1180, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36924315

RESUMEN

The incidence rate of atrial fibrillation (AF) has stayed at a high level in recent years. Despite the intensive efforts to study the pathologic changes of AF, the molecular mechanism of disease development remains unclarified. Microproteins are ribosomally translated gene products from small open reading frames (sORFs) and are found to play crucial biological functions, while remain rare attention and indistinct in AF study. In this work, we recruited 65 AF patients and 65 healthy subjects for microproteomic profiling. By differential analysis and cross-validation between independent datasets, a total of 4 microproteins were identified as significantly different, including 3 annotated ones and 1 novel one. Additionally, we established a diagnostic model with either microproteins or global proteins by machine learning methods and found the model with microproteins achieved comparable and excellent performance as that with global proteins. Our results confirmed the abnormal expression of microproteins in AF and may provide new perspectives on the mechanism study of AF.


Asunto(s)
Fibrilación Atrial , Humanos , Proteínas/genética , ARN , Micropéptidos
8.
Gene Ther ; 30(1-2): 142-149, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35644811

RESUMEN

Dystrophin deficiency due to genetic mutations causes cardiac abnormalities in Duchenne's muscular dystrophy. Dystrophin is also shown to be downregulated in conventional failing hearts. Whether restoration of dystrophin expression possesses any therapeutic potential for conventional heart failure (HF) remains to be examined. HF mouse model was generated by transverse aortic constriction (TAC). In vivo activation of dystrophin transcription was achieved by tail-vein injection of adeno-associated virus 9 carrying CRISPR/dCas system for dystrophin. We found that activation of dystrophin expression in TAC mice significantly reduced the susceptibility to arrhythmia of TAC mice and the mortality rate. We further demonstrated that over-expression of dystrophin increased cardiac conduction of hearts in TAC mice by optical mapping evaluation. Activation of dystrophin expression also increased peak sodium current in isolated ventricular myocytes from hearts of TAC mice as recorded by the patch-clamp technique. Immunoblotting and immunofluorescence showed that increased dystrophin transcription restored the membrane distribution of Nav1.5 in the hearts of TAC mice. In summary, correction of dystrophin downregulation by the CRISPR-dCas9 system reduced the susceptibility to arrhythmia of conventional HF mice through restoring Nav1.5 membrane distribution. This study paved the way to develop a new therapeutic strategy for HF-related ventricular arrhythmia.


Asunto(s)
Insuficiencia Cardíaca , Distrofia Muscular de Duchenne , Ratones , Animales , Distrofina/genética , Distrofina/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
9.
New Phytol ; 239(5): 1989-2006, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329247

RESUMEN

Legume nodules produce large quantities of heme required for the synthesis of leghemoglobin (Lb) and other hemoproteins. Despite the crucial function of Lb in nitrogen fixation and the toxicity of free heme, the mechanisms of heme homeostasis remain elusive. Biochemical, cellular, and genetic approaches were used to study the role of heme oxygenases (HOs) in heme degradation in the model legume Lotus japonicus. Heme and biliverdin were quantified and localized, HOs were characterized, and knockout LORE1 and CRISPR/Cas9 mutants for LjHO1 were generated and phenotyped. We show that LjHO1, but not the LjHO2 isoform, is responsible for heme catabolism in nodules and identify biliverdin as the in vivo product of the enzyme in senescing green nodules. Spatiotemporal expression analysis revealed that LjHO1 expression and biliverdin production are restricted to the plastids of uninfected interstitial cells. The nodules of ho1 mutants showed decreased nitrogen fixation, and the development of brown, rather than green, nodules during senescence. Increased superoxide production was observed in ho1 nodules, underscoring the importance of LjHO1 in antioxidant defense. We conclude that LjHO1 plays an essential role in degradation of Lb heme, uncovering a novel function of nodule plastids and uninfected interstitial cells in nitrogen fixation.


Asunto(s)
Lotus , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Lotus/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Biliverdina/metabolismo , Leghemoglobina/genética , Simbiosis/genética , Nódulos de las Raíces de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
New Phytol ; 238(5): 2113-2129, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945893

RESUMEN

Legumes establish symbioses with rhizobia by forming nitrogen-fixing nodules. Nitrate is a major environmental factor that affects symbiotic functioning. However, the molecular mechanism of nitrate-induced nodule senescence is poorly understood. Comparative transcriptomic analysis reveals an NAC-type transcription factor in Lotus japonicus, LjNAC094, that acts as a positive regulator in nitrate-induced nodule senescence. Stable overexpression and mutant lines of NAC094 were constructed and used for phenotypic characterization. DNA-affinity purification sequencing was performed to identify NAC094 targeting genes and results were confirmed by electrophoretic mobility shift and transactivation assays. Overexpression of NAC094 induces premature nodule senescence. Knocking out NAC094 partially relieves nitrate-induced degradation of leghemoglobins and abolishes nodule expression of senescence-associated genes (SAGs) that contain a conserved binding motif for NAC094. Nitrate-triggered metabolic changes in wild-type nodules are largely affected in nac094 mutant nodules. Induction of NAC094 and its targeting SAGs was almost blocked in the nitrate-insensitive nlp1, nlp4, and nlp1 nlp4 mutants. We conclude that NAC094 functions downstream of NLP1 and NLP4 by regulating nitrate-induced expression of SAGs. Our study fills in a key gap between nitrate and the execution of nodule senescence, and provides a potential strategy to improve nitrogen fixation and stress tolerance of legumes.


Asunto(s)
Lotus , Nódulos de las Raíces de las Plantas , Nódulos de las Raíces de las Plantas/metabolismo , Nitratos/farmacología , Nitratos/metabolismo , Factores de Transcripción/metabolismo , Fijación del Nitrógeno/genética , Lotus/metabolismo , Simbiosis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
J Neurovirol ; 29(1): 15-26, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36853588

RESUMEN

HIV-associated neurocognitive disorders (HAND) remain pervasive even with increased efficacy/use of antiretroviral therapies. Opioid use/abuse among HIV + individuals is documented to exacerbate CNS deficits. White matter (WM) alterations, including myelin pallor, and volume/structural alterations detected by diffusion tensor imaging are common observations in HIV + individuals, and studies in non-human primates suggest that WM may harbor virus. Using transgenic mice that express the HIV-1 Tat protein, we examined in vivo effects of 2-6 weeks of Tat and morphine exposure on WM using genomic and biochemical methods. RNA sequencing of striatal tissue at 2 weeks revealed robust changes in mRNAs associated with oligodendrocyte precursor populations and myelin integrity, including those for transferrin, the atypical oligodendrocyte marker N-myc downstream regulated 1 (Ndrg1), and myelin regulatory factor (Myrf/Mrf), an oligodendrocyte-specific transcription factor with a significant role in oligodendrocyte differentiation/maturation. Western blots conducted after 6-weeks exposure in 3 brain regions (striatum, corpus callosum, pre-frontal cortex) revealed regional differences in the effect of Tat and morphine on Myrf levels, and on levels of myelin basic protein (MBP), whose transcription is regulated by Myrf. Responses included individual and interactive effects. Although baseline and post-treatment levels of Myrf and MBP differed between brain regions, post-treatment MBP levels in striatum and pre-frontal cortex were compatible with changes in Myrf activity. Additionally, the Myrf regulatory ubiquitin ligase Fbxw7 was identified as a novel target in our model. These results suggest that Myrf and Fbxw7 contribute to altered myelin gene regulation in HIV.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Ratones , Imagen de Difusión Tensora , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Lóbulo Frontal/metabolismo , VIH-1/metabolismo , Ratones Transgénicos , Morfina , Factores de Transcripción/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
12.
J Exp Bot ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37952184

RESUMEN

Legumes establish symbiosis with rhizobia forming nitrogen-fixing nodules. The central role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in nodule biology has been clearly established. Recently, hydrogen sulfide (H2S) and other reactive sulfur species (RSS) have emerged as novel signaling molecules in animals and plants. A major mechanism by which ROS, RNS, and RSS fulfil their signaling role is the post-translational modification of proteins. To identify possible functions of H2S in nodule development and senescence, we used the tag-switch method to quantify changes in the persulfidation profile of common bean (Phaseolus vulgaris) nodules at different developmental stages. Proteomic analyses indicate that persulfidation plays a regulatory role in plant and bacteroid metabolism and senescence. The effect of a H2S donor on nodule functioning and on several proteins involved in ROS and RNS homeostasis was also investigated. Our results using recombinant proteins and nodulated plants support a crosstalk among H2S, ROS and RNS, a protective function of persulfidation on redox-sensitive enzymes, and a beneficial effect of H2S on symbiotic nitrogen fixation. We conclude that the general decrease of persulfidation levels observed in plant proteins of aging nodules is one of the mechanisms that disrupt redox homeostasis leading to senescence.

13.
Pediatr Res ; 94(2): 683-690, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36759750

RESUMEN

BACKGROUND: Sengers syndrome characterized by hypertrophic cardiomyopathy is an extremely rare genetic disorder. Sengers syndrome associated with left ventricular non-compaction (LVNC) has not been described. METHODS: Genetic testing was used to identify candidate AGK variants in the proband. The predicted molecular structures were constructed by protein modeling. Exon skipping caused by the identified splicing mutations was verified by in silico analyses and in vitro assays. The genotypic and phenotypic features of patients with AGK splicing mutations were extracted by a systematic review. RESULTS: The proband was characterized by Sengers syndrome and LVNC and caused by a novel compound heterozygous AGK splicing mutation. This compound mutation simultaneously perturbed the protein sequences and spatial conformation of the acylglycerol kinase protein. In silico and in vitro analyses demonstrated skipping of exons 7 and 8 and premature truncation as a result of exon 8 skipping. The systematic review indicated that patients with an AGK splicing mutation may have milder phenotypes of Sengers syndrome. CONCLUSIONS: The genotypic and phenotypic spectrums of Sengers syndrome have been expanded, which will provide essential information for genetic counseling. The molecular mechanism in AGK mutations can offer insights into the potential targets for treatment. IMPACT: First description of a child with Sengers syndrome and left ventricular non-compaction cardiomyopathy. A novel pathogenic compound heterozygous splicing mutation in AGK for Sengers syndrome was identified. The identified mutations led to exons skipping by in silico analyses and in vitro assays.


Asunto(s)
Cardiomiopatías , Catarata , Humanos , Cardiomiopatías/genética , Pruebas Genéticas , Mutación , Catarata/genética , Catarata/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
14.
BMC Infect Dis ; 23(1): 472, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461013

RESUMEN

BACKGROUND: Patients with malignancy are at a higher risk of developing nosocomial infections. However, limited studies investigated the clinical features and prognostic factors of nosocomial infections due to fungi in cancer patients. Herein, this study aims to investigate the clinical characteristics of in-hospital fungal infections and develop a nomogram to predict the risk of in-hospital death during fungal infection of hospitalized cancer patients. METHODS: This retrospective observational study enrolled cancer patients who experienced in-hospital fungal infections between September 2013 and September 2021. Univariate and multivariate logistic regression analyses were performed to identify independent predictors of in-hospital mortality. Variables demonstrating significant statistical differences in the multivariate analysis were utilized to construct a nomogram for personalized prediction of in-hospital death risk associated with nosocomial fungal infections. The predictive performance of the nomogram was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. RESULTS: A total of 216 participants were included in the study, of which 57 experienced in-hospital death. C.albicans was identified as the most prevalent fungal species (68.0%). Respiratory infection accounted for the highest proportion of fungal infections (59.0%), followed by intra-abdominal infection (8.8%). The multivariate regression analysis revealed that Eastern Cooperative Oncology Group Performance Status (ECOG-PS) 3-4 (odds ratio [OR] = 6.08, 95% confidence interval [CI]: 2.04-18.12), pulmonary metastases (OR = 2.76, 95%CI: 1.11-6.85), thrombocytopenia (OR = 2.58, 95%CI: 1.21-5.47), hypoalbuminemia (OR = 2.44, 95%CI: 1.22-4.90), and mechanical ventilation (OR = 2.64, 95%CI: 1.03-6.73) were independent risk factors of in-hospital death. A nomogram based on the identified risk factors was developed to predict the individual probability of in-hospital mortality. The nomogram demonstrated satisfactory performance in terms of classification ability (area under the curve [AUC]: 0.759), calibration ability, and net clinical benefit. CONCLUSIONS: Fungi-related nosocomial infections are prevalent among cancer patients and are associated with poor prognosis. The constructed nomogram provides an invaluable tool for oncologists, enabling them to make timely and informed clinical decisions that offer substantial net clinical benefit to patients.


Asunto(s)
Infección Hospitalaria , Neoplasias Pulmonares , Humanos , Mortalidad Hospitalaria , Nomogramas , Estudios Retrospectivos , Pronóstico
15.
Artículo en Inglés | MEDLINE | ID: mdl-37498472

RESUMEN

PURPOSE: Radial artery occlusion (RAO) is an unresolved complication after transradial artery (TRA) puncture. The aim of this observational study was to assess the feasibility and safety of retrograde recanalization of RAO through distal transradial access (dTRA). METHODS: From June 2021 to March 2022, 28 consecutive patients with successful puncture and intubation through the dTRA in the anatomical snuffbox and RAO confirmed by angiography were enrolled. RESULTS: Among the 28 patients, 27 (96.4%) patients with RAO were successfully retrogradely recanalized through the dTRA and successfully underwent coronary angiography or coronary intervention. After the procedure, only 1 (3.7%) patient developed a forearm hematoma, and there were no other bleeding complications or nerve disorders. CONCLUSIONS: DTRA is a safe and feasible approach for retrograded recanalization of RAO, with a high procedure success rate and few complications.

16.
Kidney Blood Press Res ; 48(1): 568-577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37562365

RESUMEN

INTRODUCTION: Neurofibromatosis type 1 (NF-1) is caused by mutations in the NF1 gene that encodes neurofibromin, a negative regulator of RAS proto-oncogene. Approximately one-third of the reported pathogenic mutations in NF1 are splicing mutations, but most consequences are unclear. The objective of this study was to identify the pathogenicity of splicing mutation in a Chinese family with NF-1 and determine the effects of the pre-mRNA splicing mutation by in vitro functional analysis. METHODS: Next-generation sequencing was used to screen candidate mutations. We performed a minigene splicing assay to determine the effect of the splicing mutation on NF1 expression, and three-dimensional structure models of neurofibromin were generated using SWISS-MODEL and PROCHECK methods, respectively. RESULTS: A pathogenic splicing mutation c.479+1G>C in NF1 was found in the proband characterized by childhood-onset refractory hypertension. In vitro analysis demonstrated that c.479+1G>C mutation caused the skipping of exon 4, leading to a glutamine-to-valine substitution at position 97 in neurofibromin and an open reading frame shift terminating at codon 108. Protein modeling showed that several major domains were missing in the truncated neurofibromin protein. CONCLUSION: The splicing mutation c.479+1G>C identified in a Chinese patient with NF-1 and childhood-onset refractory hypertension caused the skipping of exon 4 and a truncated protein. Our findings offer new evidence for the molecular diagnosis of NF-1.


Asunto(s)
Hipertensión , Neurofibromatosis 1 , Niño , Humanos , Genes de Neurofibromatosis 1 , Hipertensión/genética , Mutación , Neurofibromatosis 1/genética , Neurofibromatosis 1/diagnóstico , Neurofibromina 1/genética
17.
Molecules ; 29(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38202726

RESUMEN

Visible-light-enhanced TiO2 nanocatalysts doped with Cu and Fe were synthesized using the sol-gel method to investigate their performance in degrading gaseous benzene. The structure and morphology of mono- and co-doped TiO2 (i.e., Cu/Fe-TiO2, Cu-Fe-TiO2) were characterized using SEM, EDS, XRD, BET, Raman, UV-vis-DRS, and XPS techniques. The results indicated that the presence of Cu/Fe mono- and co-doped TiO2 leads to the formation of an anatase phase similar to pure TiO2. Furthermore, the introduction of Cu/Fe enhanced the presence of lattice defects and increased the specific surface area of TiO2. This enhancement can be attributed to the increase in oxygen vacancies, especially in the case of Cu-Fe-TiO2. Additionally, Cu-Fe-TiO2 showed a higher concentration of surface-bound hydroxyl groups/chemically adsorbed oxygen and a narrower bandgap than pure TiO2. Consequently, Cu-Fe-TiO2 exhibited the highest photocatalytic performance of 658.33 µgC6H6/(g·h), achieving a benzene degradation rate of 88.87%, surpassing that of pure TiO2 (5.09%), Cu-TiO2 (66.92%), and Fe-TiO2 (59.99%). Reusability tests demonstrated that Cu-Fe-TiO2 maintained a high benzene degradation efficiency of 71.4%, even after five experimental cycles, highlighting its exceptional stability and reusability. In summary, the addition of Cu/Fe to TiO2 enhances its ability to degrade gaseous benzene by prolonging the catalyst's lifespan and expanding its photoresponse range to include visible light.

18.
Environ Monit Assess ; 195(8): 970, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37466699

RESUMEN

River sediment is vital in containing water pollution and strengthening water remediation. This paper has conducted a study on the microecological health assessment of the sediment and water body of Guixi River in Dianjiang, Chongqing, China, using metagenomics sequencing and microbial biological integrity index (M-IBI) technology. The analysis of physical and chemical characteristics shows that the concentration of TN varies from 2.62 to 9.76 mg/L in each sampling section, and the eutrophication of the water body is relatively severe. The proportion of Cyanobacteria in the sampling section at the sink entrance is higher than that of other sites, where there are outbreaks of water blooms and potential hazards to human health. The dominant functions of each site include carbon metabolism, TCA cycle, and pyruvate metabolism. In addition, the main virulence factors and antibiotic resistance genes in sediment are Type IV pili (VF0082), LOS (CVF494), MymA operon (CVF649), and macrolide resistance genes macB, tetracyclic tetA (58), and novA. Correlation analysis of environmental factors and microorganisms was also performed, and it was discovered that Thiothrix and Acidovorax had obvious gene expression in the nitrogen metabolism pathway, and the Guixi River Basin had a self-purification capacity. Finally, based on the microecological composition of sediment and physical and chemical characteristics of the water body, the health assessment was carried out, indicating that the main pollution area was Dianjiang Middle School and the watershed near the sewage treatment plant. The findings should theoretically support an in-depth assessment of the water environment's microecological health.


Asunto(s)
Monitoreo del Ambiente , Metagenómica , Ríos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Farmacorresistencia Bacteriana , Genes Bacterianos , Humanos
19.
Mol Carcinog ; 61(11): 989-1001, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36121331

RESUMEN

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, and the prognosis varies due to its high heterogeneity, systematic evaluation of HCC is mainly based on genomic and transcriptomic features, metabolomics-based classification has yet to be reported. Here we performed RNA-seq on 50 paired samples and metabolomics analysis on 72 paired samples of both normal and tumor tissues from HCC patients. Through unsupervised hierarchical cluster analysis with train and test data sets, metabolic and gene expression signatures were identified. We found that most fluxes related to glutamate are attenuated, except for the glutamate-proline pathway. Three subgroups were identified with distinct survival, clinical observations, and metabolic/gene signatures. S1 is characterized by a relatively poor prognosis, a low concentration of the degradation products of phosphatidylcholine and phosphatidylethanolamine, an enrichment of specific genes related to focal adhesion, and an upregulation of genes on chromosome 6q27. Beyond commonly downregulated metabolites, S2 tumors are largely characterized by few alterations in metabolites and genes, as well as low incidence of mutations/loss of heterozygosity, the metabolite signature of this group consists of hexoses and their phosphates, and the prognosis is the best, with a 5-year survival rate of greater than 80%. S3 is characterized by the worst survival (an approximately 20% 5-year survival rate), unsaturated fatty acid metabolites, an upregulation of specific genes involved in metastasis, and an upregulation of genes on chromosome 1q21. The metabolite-based classifications are more stable and reproducible, with each subgroup characterized by a distinct molecular signature and disease prognosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Glutamatos/genética , Glutamatos/metabolismo , Humanos , Neoplasias Hepáticas/patología , Metabolómica , Fosfatos/metabolismo , Fosfatidilcolinas , Fosfatidiletanolaminas , Prolina/genética
20.
Anal Biochem ; 652: 114748, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618035

RESUMEN

A simple and time-saving colorimetric method was developed to quantify sulfonamides (SAAs) in milk via inhibition of the human carbonic anhydrase II (hCAII)-like activity of ZIF-8 that can hydrolyze p-nitrophenyl acetate (pNPA) to p-nitrophenol (pNP), following the color change from yellow to colorless. Effects of different reaction conditions, including pH, temperature, amount of ZIF-8, and incubation time, were investigated. The value of Michaelis-Menten constant (Km) is measured to be 0.15 mM, which exhibits high affinity to pNPA. The IC50 (0.17, 0.24, and 0.60 mM) and inhibition constant (Ki) (0.09, 0.13, and 0.33 mM) of sulfamethazine (SD), sulfadimethoxine (SDM), and sulfathiazole (ST) on ZIF-8 were measured, respectively. Moreover, the activity of ZIF-8 remains more than 90.0% of its initial activity after 30 days' storage. The colorimetric method for SD, SDM, and ST determination was established at the linear ranges of 6.3-750.0 µM (1.75-208.75 mg/kg), 6.3-750.0 µM (1.96-232.75 mg/kg), and 5.0-1250.0 µM (1.28-319.15 mg/kg) with limit of detection of 4.3, 3.2, and 3.9 µΜ (1.2, 0.99, and 0.96 mg/kg), respectively. In addition, the spiked recoveries of SAAs in milk sample are in the range of 81.6%-106.7% with RSD less than 6.5%. In short, the developed colorimetric method can achieve rapid analysis of SAAs in milk with simple operations.


Asunto(s)
Colorimetría , Leche , Animales , Anhidrasa Carbónica II , Colorimetría/métodos , Leche/química , Sulfadimetoxina/análisis , Sulfonamidas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA