Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 705: 149742, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38460438

RESUMEN

l-norleucine, an isomer of leucine, stimulates the anabolic process of insulin. However, it is not known if and how it improves insulin sensitivity and insulin resistance. This experiment describes the generation of an insulin resistance model using high glucose-induced cells and the administration of 1.0 mmol/L l-norleucine for 48 h, to observe the effects on metabolism and gene expression in skeletal muscle cells. The results showed that l-norleucine significantly increased mitochondrial ATP content, decreased the amount of reactive oxygen species (ROS) and promoted the expression of mitochondrial generation-related genes TFAM, AMPK, PGC-1α in cells under high glucose treatment; at the same time, l-norleucine also increased glucose uptake, suggesting that l-norleucine increased insulin sensitivity and improved insulin resistance. This study suggesting that l-norleucine improves insulin resistance by ameliorating oxidative stress damage of mitochondria, improving mitochondrial function, and improving insulin sensitivity in skeletal muscle cell caused by high glucose, rather than by altering mitochondrial efficiency.


Asunto(s)
Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Insulina/metabolismo , Norleucina/metabolismo , Norleucina/farmacología , Glucosa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Mitocondrias Musculares/metabolismo
2.
Mol Hum Reprod ; 29(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37068378

RESUMEN

Strategies to maximize individual fertility chances are constant requirements of ART. In vitro folliculogenesis may represent a valid option to create a large source of immature ovarian follicles in ART. Efforts are being made to set up mammalian follicle culture protocols with suitable FSH stimuli. In this study, a new type of recombinant FSH (KN015) with a prolonged half-life is proposed as an alternative to canonical FSH. KN015 supports the in vitro development of mouse follicles from primary to preovulatory stage with higher efficiency than canonical FSH and enhanced post-fertilization development rates of the ovulated oocytes. The use of KN015 also allows us to compare the dynamic transcriptome changes in oocytes and granulosa cells at different stages, in vivo and in vitro. In particular, KN015 facilitates mRNA accumulation in growing mouse oocytes and prevents spontaneous luteinization of granulosa cells in vitro. Novel analyses of transcriptome changes in this study reveal that the in vivo oocytes were more efficient than in vitro oocytes in terms of maternal mRNA clearing during meiotic maturation. KN015 promotes the degradation of maternal mRNA during in vitro oocyte maturation, improves cytoplasmic maturation and, therefore, enhances embryonic developmental potential. These findings establish new transcriptome data for oocyte and granulosa cells at the key stages of follicle development, and should help to widen the use of KN015 as a valid and commercially available hormonal support enabling optimized in vitro development of follicles and oocytes.


Asunto(s)
ARN Mensajero Almacenado , Transcriptoma , Femenino , Ratones , Animales , ARN Mensajero Almacenado/metabolismo , Oogénesis/genética , Oocitos/metabolismo , Células de la Granulosa , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Meiosis , Mamíferos
3.
J Transl Med ; 21(1): 293, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37121999

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a common and serious complication of sepsis with high mortality. Ferroptosis, categorized as programmed cell death, contributes to the development of lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is an endogenous lipid mediator that exerts protective effects against multiorgan injury. However, the role of PCTR1 in the ferroptosis of sepsis-related ALI remains unknown. METHODS: A pulmonary epithelial cell line and a mouse model of ALI stimulated with lipopolysaccharide (LPS) were established in vitro and in vivo. Ferroptosis biomarkers, including ferrous (Fe2+), glutathione (GSH), malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE), were assessed by relevant assay kits. Glutathione peroxidase 4 (GPX4) and prostaglandin-endoperoxide synthase 2 (PTGS2) protein levels were determined by western blotting. Lipid peroxides were examined by fluorescence microscopy and flow cytometry. Cell viability was determined by a CCK-8 assay kit. The ultrastructure of mitochondria was observed with transmission electron microscopy. Morphology and inflammatory cytokine levels predicted the severity of lung injury. Afterward, related inhibitors were used to explore the potential mechanism by which PCTR1 regulates ferroptosis. RESULTS: PCTR1 treatment protected mice from LPS-induced lung injury, which was consistent with the effect of the ferroptosis inhibitor ferrostatin-1. PCTR1 treatment decreased Fe2+, PTGS2 and lipid reactive oxygen species (ROS) contents, increased GSH and GPX4 levels and ameliorated mitochondrial ultrastructural injury. Administration of LPS or the ferroptosis agonist RSL3 resulted in reduced cell viability, which was rescued by PCTR1. Mechanistically, inhibition of the PCTR1 receptor lipoxin A4 (ALX), protein kinase A (PKA) and transcription factor cAMP-response element binding protein (CREB) partly decreased PCTR1 upregulated GPX4 expression and a CREB inhibitor blocked the effects ofPCTR1 on ferroptosis inhibition and lung protection. CONCLUSION: This study suggests that PCTR1 suppresses LPS-induced ferroptosis via the ALX/PKA/CREB signaling pathway, which may offer promising therapeutic prospects in sepsis-related ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ferroptosis , Sepsis , Animales , Ratones , Antígenos CD59 , Ciclooxigenasa 2 , Lipopolisacáridos/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Sepsis/complicaciones , Factor de Transcripción Activador 2
4.
Bioorg Chem ; 131: 106328, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36542986

RESUMEN

Epigenetic regulation and Focal adhesion kinase (FAK) are considered to be two important targets for the development of antitumor drugs. Studies have shown that the combination of FAK and HDAC inhibitors could exhibit synergistic effects in a subset of cancer cells in vitro and in vivo. At present, there are few reports on dual target inhibitors of FAK and HDAC. Here, we first reported a new compound MY-1259 as a dual FAK and HDAC6 inhibitor, which exhibited efficient treatment effects on gastric cancers in vitro and in vivo. MY-1259 exhibited potent inhibitory activities against FAK (IC50 = 132 nM) and HDAC6 (IC50 = 16 nM). Notably, MY-1259 showed selective inhibitory potency on HDAC6 over HDAC1, HDAC2 and HDAC3. In addition, MY-1259 could potently inhibit the proliferative activities of MGC-803 and BGC-823 cells (IC50 = 3.91 and 15.46 nM, respectively, using flow cytometry counting), induce cell apoptosis, and cellular senescence. MY-1259 could effectively down-regulate the levels of Ac-Histone H3 and Ac-α-tubulin, and also inhibit the phosphorylation of FAK at three phosphorylation sites Y397, Y576/577 and Y925, thereby inhibiting the activation of ERK and AKT/mTOR. MY-1259 exhibited more effective antitumor effect in vivo than the HDAC inhibitor SAHA and FAK inhibitor TAE-226 alone or in combination, showing the advantages of FAK/HDAC dual inhibitors in the treatment of gastric cancers. Therefore, the results in this work suggested that inhibition of FAK and HDAC by MY-1259 might represent a promising strategy for the treatment of gastric cancers.


Asunto(s)
Antineoplásicos , Proteína-Tirosina Quinasas de Adhesión Focal , Inhibidores de Histona Desacetilasas , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Epigénesis Genética , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Relación Estructura-Actividad
5.
Bioorg Chem ; 137: 106580, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37149948

RESUMEN

As a class of microtubule targeting agents, colchicine binding site inhibitors (CBSIs) are considered as promising drug candidates for cancer therapy. However, due to adverse reactions, there are currently no CBSIs approved by FDA for cancer treatment. Therefore, extensive efforts are still encouraged to find novel CBSIs with different chemical structures and better anticancer efficacies. In this work, we designed and synthesized a new coumarin-dihydroquinoxalone derivative, MY-673, and evaluated its anticancer potency in vitro and in vivo. We confirmed that MY-673 was a potent CBSI that it not only inhibited tubulin polymerization, but also exhibited significant inhibitory potency on the growth of 13 cancer cells with IC50 values from 11.7 nM to 395.9 nM. Based on the results of kinase panel screening, MY-673 could inhibit ERK (extracellular regulated protein kinases) pathways-related kinases. We further confirmed that MY-673 could inhibit ERK signaling pathway in MGC-803 and HGC-27 cells, and then affected the expression level of SMAD4 protein in TGF-ß (transforming growth factor ß) /SMAD (small mother against decapentaplegic) signaling pathway using the western blotting assay. In addition, compound MY-673 could effectively inhibit cell proliferation, migration and induce cell apoptosis. We also further confirmed the in vivo efficacy of MY-673 in inhibiting tumor growth using the MGC-803 xenograft tumor model. At 20 mg/kg, the TGI rate was 85.9%, and it did not cause obvious toxicity to the main organs of mice. Together, the results we report here indicated that MY-673 was a promising CBSI for cancer treatment, which was capable of inhibiting the ERK pathway with potent antiproliferative activities in vitro and in vivo.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Animales , Ratones , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico , Moduladores de Tubulina/química , Sistema de Señalización de MAP Quinasas , Tubulina (Proteína)/metabolismo , Microtúbulos , Colchicina/metabolismo , Proliferación Celular , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad
6.
J Enzyme Inhib Med Chem ; 38(1): 2237701, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37489043

RESUMEN

In this work, a series of novel arylamide derivatives containing piperazine moiety were designed and synthesised as tubulin polymerisation inhibitors. Among 25 target compounds, compound 16f (MY-1121) exhibited low nanomolar IC50 values ranging from 0.089 to 0.238 µM against nine human cancer cells. Its inhibitory effects on liver cancer cells were particularly evident with IC50 values of 89.42 and 91.62 nM for SMMC-7721 and HuH-7 cells, respectively. Further mechanism studies demonstrated that compound 16f (MY-1121) could bind to the colchicine binding site of ß-tubulin and directly act on ß-tubulin, thus inhibiting tubulin polymerisation. Additionally, compound 16f (MY-1121) could inhibit colony forming ability, cause morphological changes, block cell cycle arrest at the G2 phase, induce cell apoptosis, and regulate the expression of cell cycle and cell apoptosis related proteins in liver cancer cells. Overall, the promising bioactivities of compound 16f (MY-1121) make the novel arylamide derivatives have the value for further development as tubulin polymerisation inhibitors with potent anticancer activities.


Asunto(s)
Neoplasias Hepáticas , Tubulina (Proteína) , Humanos , Apoptosis , Sitios de Unión , Piperazina , Moduladores de Tubulina
7.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770733

RESUMEN

This study aimed to investigate the differences in the physicochemical and structural characteristics, digestibility, and lipolysis inhibitory potential in vitro of highland barley resistant starches (HBRSs) prepared by autoclaving (HBSA), microwave-assisted autoclaving (HBSM), isoamylase (HBSI) and pullulanase (HBSP) debranching modifications. Results revealed that the resistant starch content of native starch was significantly elevated after modifications. HBSA and HBSM showed distinctly higher swelling power and water-binding capacities along with lower amylose amounts and solubilities than those of HBSI and HBSP (p < 0.05). Fourier transform infrared spectroscopy and X-ray diffraction exhibited that HBSP displayed the highest degree of the ordered crystalline region and crystallinity with a mixture of CB- and V-type polymorphs. Meanwhile, HBSA and HBSM were characterized by their high degree of the amorphous region with a mixture of B- and V-type polymorphs. Physical and enzymatic modifications resulted in different functionalities of HBRSs, among which HBSP showed the lowest digestibility and HBSM exhibited the highest inhibitory activity on lipolysis due to their structure and structure-based morphology and particle size. This study provided significant insights into the development of native starch from highland barley as an alternative functional food.


Asunto(s)
Hordeum , Almidón Resistente , Lipólisis , Almidón/química , Amilosa/química , Difracción de Rayos X
8.
Molecules ; 27(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956943

RESUMEN

[1,2,4]Triazolo[1,5-a]pyrimidine and indole skeletons are widely used to design anticancer agents. Therefore, in this work, a series of [1,2,4]triazolo[1,5-a]pyrimidine indole derivatives were designed and synthesized by the molecular hybridization strategy. The antiproliferative activities of the target compounds H1-H18 against three human cancer cell lines, MGC-803, HCT-116 and MCF-7, were tested. Among them, compound H12 exhibited the most active antiproliferative activities against MGC-803, HCT-116 and MCF-7 cells, with IC50 values of 9.47, 9.58 and 13.1 µM, respectively, which were more potent than that of the positive drug 5-Fu. In addition, compound H12 could dose-dependently inhibit the growth and colony formation of MGC-803 cells. Compound H12 exhibited significant inhibitory effects on the ERK signaling pathway, resulting in the decreased phosphorylation levels of ERK1/2, c-Raf, MEK1/2 and AKT. Furthermore, compound 12 induced cell apoptosis and G2/M phase arrest, and regulated cell cycle-related and apoptosis-related proteins in MGC-803 cells. Taken together, we report here that [1,2,4]triazolo[1,5-a]pyrimidine indole derivatives, used as anticancer agents via the suppression of ERK signaling pathway and the most active compound, H12, might be a valuable hit compound for the development of anticancer agents.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/farmacología , Sistema de Señalización de MAP Quinasas , Estructura Molecular , Pirimidinas/farmacología , Relación Estructura-Actividad
9.
Hum Mol Genet ; 28(20): 3422-3430, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31384951

RESUMEN

Germ cell-derived genomic structure variants not only drive the evolution of species but also induce developmental defects in offspring. The genomic structure variants have different types, but most of them are originated from DNA double-strand breaks (DSBs). It is still not well known whether DNA DSBs exist in adult mammalian oocytes and how the growing and fully grown oocytes repair their DNA DSBs induced by endogenous or exogenous factors. In this study, we detected the endogenous DNA DSBs in the growing and fully grown mouse oocytes and found that the DNA DSBs mainly localized at the centromere-adjacent regions, which are also copy number variation hotspots. When the exogenous DNA DSBs were introduced by Etoposide, we found that Rad51-mediated homologous recombination (HR) was used to repair the broken DNA. However, the HR repair caused the chromatin intertwined and impaired the homologous chromosome segregation in oocytes. Although we had not detected the indication about HR repair of endogenous centromere-adjacent DNA DSBs, we found that Rad52 and RNA:DNA hybrids colocalized with these DNA DSBs, indicating that a Rad52-dependent DNA repair might exist in oocytes. In summary, our results not only demonstrated an association between endogenous DNA DSBs with genomic structure variants but also revealed one specific DNA DSB repair manner in oocytes.


Asunto(s)
Segregación Cromosómica/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Meiosis/fisiología , Oocitos/metabolismo , Animales , Segregación Cromosómica/genética , Reparación del ADN/genética , Femenino , Infertilidad Femenina/genética , Masculino , Meiosis/genética , Ratones
10.
BMC Pregnancy Childbirth ; 21(1): 60, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33451285

RESUMEN

BACKGROUND: Pruritus is one of the most common side effects of epidural morphine administered for post-surgery analgesia, and pregnant women tend to be highly susceptible. The relative contributions of morphine concentration, local anesthetics, and level of pain to pruritus after epidural morphine for post-cesarean delivery analgesia remain unclear. Accordingly, the present study aimed to identify risk factors for pruritus after continuous administration of epidural morphine for post-cesarean delivery analgesia. METHODS: This case control study was based on routinely collected clinical data. Participants included women who had undergone cesarean section and adopted a patient-controlled analgesia pump for postoperative analgesia. A series of logistic regression analyses were performed. Interaction terms were added to explore the moderation effects of combined local anesthetics and pain level on associations between morphine concentration and pruritus. Robustness of the results was checked through sensitivity analysis using propensity scores matching approach. RESULTS: Higher morphine concentration, assisted reproductive treatment, and multipara and cesarean section history were significantly more prevalent in the pruritus group than in the control group. The probabilities of pruritus at morphine concentrations of 10, 15, 20, 25, 30 and 40 µg/mL increased sequentially from 0.05, 0.1, 0.2, 0.35, 0.54 to 0.84, respectively. The trend remained steep in the ropivacaine stratum and became flatter when combined with levobupivacaine. At mild pain combined with levobupivacaine, the incidence of pruritus increased from 0.33 (95% confidence interval [CI] 0.1-0.68) in the 10 µg/mL morphine group to 0.48 (95% CI 0.1-0.88) in the 40 µg/mL morphine group. In the stratum of moderate pain combined with levobupivacaine, the incidence increased from 0.4 (95% CI 0.04-0.92) to 0.56 (95% CI 0.03-0.98). The results in the sensitivity analysis were in consistent with above findings. CONCLUSIONS: Higher concentrations of morphine, multipara, and assisted reproductive treatment were factors associated with a higher probability of pruritus. Pain level or combined local anesthetics could moderate the association between morphine concentration and pruritus.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/efectos adversos , Morfina/administración & dosificación , Morfina/efectos adversos , Dolor/tratamiento farmacológico , Prurito/inducido químicamente , Adulto , Analgesia Epidural , Analgesia Obstétrica , Estudios de Casos y Controles , Cesárea , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Manejo del Dolor , Embarazo , Factores de Riesgo , Adulto Joven
11.
Molecules ; 26(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299525

RESUMEN

FAK is a nonreceptor intracellular tyrosine kinase which plays an important biological function. Many studies have found that FAK is overexpressed in many human cancer cell lines, which promotes tumor cell growth by controlling cell adhesion, migration, proliferation, and survival. Therefore, targeting FAK is considered to be a promising cancer therapy with small molecules. Many FAK inhibitors have been reported as anticancer agents with various mechanisms. Currently, six FAK inhibitors, including GSK-2256098 (Phase I), VS-6063 (Phase II), CEP-37440 (Phase I), VS-6062 (Phase I), VS-4718 (Phase I), and BI-853520 (Phase I) are undergoing clinical trials in different phases. Up to now, there have been many novel FAK inhibitors with anticancer activity reported by different research groups. In addition, FAK degraders have been successfully developed through "proteolysis targeting chimera" (PROTAC) technology, opening up a new way for FAK-targeted therapy. In this paper, the structure and biological function of FAK are reviewed, and we summarize the design, chemical types, and activity of FAK inhibitors according to the development of FAK drugs, which provided the reference for the discovery of new anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/química , Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Modelos Moleculares , Terapia Molecular Dirigida , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/química
12.
Molecules ; 26(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34443487

RESUMEN

The chalcone and quinoline scaffolds are frequently utilized to design novel anticancer agents. As the continuation of our work on effective anticancer agents, we assumed that linking chalcone fragment to the quinoline scaffold through the principle of molecular hybridization strategy could produce novel compounds with potential anticancer activity. Therefore, quinoline-chalcone derivatives were designed and synthesized, and we explored their antiproliferative activity against MGC-803, HCT-116, and MCF-7 cells. Among these compounds, compound 12e exhibited a most excellent inhibitory potency against MGC-803, HCT-116, and MCF-7 cells with IC50 values of 1.38, 5.34, and 5.21 µM, respectively. The structure-activity relationship of quinoline-chalcone derivatives was preliminarily explored in this report. Further mechanism studies suggested that compound 12e inhibited MGC-803 cells in a dose-dependent manner and the cell colony formation activity of MGC-803 cells, arrested MGC-803 cells at the G2/M phase and significantly upregulated the levels of apoptosis-related proteins (Caspase3/9 and cleaved-PARP) in MGC-803 cells. In addition, compound 12e could significantly induce ROS generation, and was dependent on ROS production to exert inhibitory effects on gastric cancer cells. Taken together, all the results suggested that directly linking chalcone fragment to the quinoline scaffold could produce novel anticancer molecules, and compound 12e might be a valuable lead compound for the development of anticancer agents.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Chalconas/síntesis química , Chalconas/farmacología , Diseño de Fármacos , Quinolinas/síntesis química , Quinolinas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalconas/química , Humanos , Quinolinas/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
13.
J Cell Physiol ; 234(5): 6042-6053, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30500068

RESUMEN

Chondrocyte apoptosis has been implicated as a major pathological osteoarthritis (OA) change in humans and experimental animals. We evaluate the ability of miR-186 on chondrocyte apoptosis and proliferation in OA and elucidate the underlying mechanism concerning the regulation of miR-186 in OA. Gene expression microarray analysis was performed to screen differentially expressed messenger RNAs (mRNAs) in OA. To validate the effect of miR-186 on chondrocyte apoptosis, we upregulated or downregulated endogenous miR-186 using mimics or inhibitors. Next, to better understand the regulatory mechanism for miR-186 governing SPP1, we suppressed the endogenous expression of SPP1 by small interfering RNA (siRNA) against SPP1 in chondrocytes. We identified SPP1 is highly expressed in OA according to an mRNA microarray data set GSE82107. After intra-articular injection of papain into mice, the miR-186 is downregulated while the SPP1 is reciprocal, with dysregulated PI3K-AKT pathway in OA cartilages. Intriguingly, miR-186 was shown to increase chondrocyte survival, facilitate cell cycle entry in OA chondrocytes, and inhibit chondrocyte apoptosis in vitro by modulation of pro- and antiapoptotic factors. The determination of luciferase activity suggested that miR-186 negatively targets SPP1. Furthermore, we found that the effect of miR-186 suppression on OA chondrocytes was lost when SPP1 was suppressed by siRNA, suggesting that miR-186 affected chondrocytes by targeting and depleting SPP1, a regulator of PI3K-AKT pathway. Our findings reveal a novel mechanism by which miR-186 inhibits chondrocyte apoptosis in OA by interacting with SPP1 and regulating PI3K-AKT pathway. Restoring miR-186 might be a future therapeutic strategy for OA.


Asunto(s)
Apoptosis , Artritis Experimental/enzimología , Condrocitos/enzimología , Articulaciones/enzimología , MicroARNs/metabolismo , Osteoartritis/enzimología , Osteopontina/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/genética , Artritis Experimental/patología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Proliferación Celular , Condrocitos/patología , Bases de Datos Genéticas , Regulación hacia Abajo , Humanos , Articulaciones/patología , Masculino , Ratones , MicroARNs/genética , Células 3T3 NIH , Osteoartritis/inducido químicamente , Osteoartritis/genética , Osteoartritis/patología , Osteopontina/genética , Papaína , Fosfatidilinositol 3-Quinasa/genética , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , Transducción de Señal
14.
Biochem Biophys Res Commun ; 494(3-4): 569-574, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29066351

RESUMEN

MicroRNAs are important regulators of the pathogenesis of B-cell acute lymphoblastic leukaemia (B-ALL). In this study, we identified miR-3173 and its predicted target gene PTK2 were correspondingly differentially expressed in B-ALL patients. In B-ALL cell lines, CCK-8 proliferation assay revealed that miR-3173 could inhibit the cell proliferation. Moreover, transwell assay revealed that miR-3173 could also inhibit cell migration and invasion in B-ALL cell lines. Luciferase assays revealed that miR-3173 directly bound to the 3'untranslated region of PTK2, and western blotting showed that miR-3173 suppressed the expression of PTK2 at the protein level. Generally, this study indicates that miR-3173 negatively regulates PTK2 and inhibits proliferation and invasion of B-ALL cell lines. Thus, miR-3173 may represent a potential therapeutic molecule for B-ALL intervention.


Asunto(s)
Quinasa 1 de Adhesión Focal/metabolismo , MicroARNs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Adolescente , Adulto , Movimiento Celular , Niño , Preescolar , Regulación hacia Abajo , Femenino , Humanos , Lactante , Masculino , Invasividad Neoplásica , Células Tumorales Cultivadas , Adulto Joven
15.
J Glob Antimicrob Resist ; 36: 223-229, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185239

RESUMEN

OBJECTIVES: The dissemination of antibiotic resistance genes (ARGs) from the environment, including agricultural sources, is of increasing concern. In this study, we examined the antibiotic resistance profile and genomic sequence of a strain of Chryseobacterium indoltheticum obtained from an agricultural location. METHODS: The multidrug-resistant bacterial strain POL15 was isolated from the wastewater of a livestock farm in China. Whole-genome sequencing was performed followed by bioinformatics analyses to identify integrative and conjugative elements (ICEs) and ARGs. Mating assays were performed to analyse ICE transferability. RESULTS: Whole-genome sequencing and annotation showed that the genome of POL15 encodes ARGs. Additionally, an ICE named ICECiPOL15, which carries a class C ß-lactamase-encoding gene blaAQU, was identified in the POL15 genome. Genes encoding an integrase, an excisionase, a relaxase, a type IV coupling protein and conjugative transposon proteins involved in a type IV secretion system were also identified in ICECiPOL15. Sequence alignment revealed that ICECiPOL15 might have evolved from other Chryseobacterium species. The horizontal transferability of ICECiPOL15 was demonstrated by mating experiments between C. indoltheticum POL15 and Escherichia coli DL21. CONCLUSIONS: This study represents the first characterization of a mobilizable antibiotic resistance ICE in a species of C. indoltheticum and provides evidence that C. indoltheticum strains could be important reservoirs and vehicles for ARGs on livestock farms.


Asunto(s)
Chryseobacterium , Resistencia betalactámica , Genómica , Farmacorresistencia Bacteriana Múltiple/genética
16.
Food Res Int ; 187: 114310, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763627

RESUMEN

Rice bran was modified by steam explosion (SE) treatment to investigate the impact of different steam pressure (0.4, 0.8, 1.2, 1.6, and 2.0 MPa) with rice bran through 60 mesh and rice bran pulverization (60, 80, and 100 mesh) with the steam pressure of 1.2 MPa on the structure, thermal stability, physicochemical and functional characteristics of insoluble dietary fiber (IDF) extracted from rice bran. IDF with SE treatment from scanning electron microscopy images showed a porous honeycomb structure, and lamellar shape in IDF became obvious with the increase of steam pressure. The relative crystallinity and polymerization degree of crystalline regions in IDF from rice bran with SE treatment from X-ray diffraction analysis were decreased. Differential scanning calorimetry results showed that thermal stability of IDF with SE treatment increased with the increase of crushing degree. The results of FT-IR also suggested that some glycosidic and hydrogen bonds in IDF could be broken, and some cellulose and hemicellulose were degraded during SE process. The physicochemical and functional characteristics of IDF, including water-holding capacity, oil-holding, glucose adsorption capacity, α-amylase and pancreatic lipase inhibition capacity were decreased with the increase of steam pressure and crushing degree. The swelling and nitrite adsorption capacities of IDF were increased first and then decreased with the increase of steam pressure. The physicochemical and functional characteristics of IDF from rice bran were improved after SE treatment, which might provide references for the utilization of IDF from rice bran with SE treatment.


Asunto(s)
Fibras de la Dieta , Oryza , Tamaño de la Partícula , Presión , Vapor , Oryza/química , Fibras de la Dieta/análisis , Manipulación de Alimentos/métodos , Solubilidad , Difracción de Rayos X , Calor , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía Electrónica de Rastreo , Rastreo Diferencial de Calorimetría
17.
Eur J Med Chem ; 265: 116079, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38150962

RESUMEN

In this work, a series of novel coumarin-based derivatives were designed and synthesized as tubulin polymerization inhibitors targeting the colchicine binding site, and their antiproliferative activities against MGC-803, HCT-116 and KYSE30 cells were evaluated. Among them, the compound I-3 (MY-1442) bearing a 6-methoxy-1,2,3,4-tetrahydroquinoline group exhibited most potent inhibitory activities on MGC-803 (IC50 = 0.034 µM), HCT-116 (IC50 = 0.081 µM) and KYSE30 cells (IC50 = 0.19 µM). Further mechanism studies demonstrated that compound I-3 (MY-1442) could directly bind to the colchicine binding site of ß-tubulin to inhibit tubulin polymerization and microtubules at the cellular level. The results of molecular docking indicated there were well binding interactions between compound I-3 (MY-1442) and the colchicine binding site of ß-tubulin. Compound I-3 (MY-1442) also exhibited effective anti-proliferation, pro-apoptosis, and anti-migration abilities against gastric cancer cells MGC-803. Additionally, compound I-3 (MY-1442) could regulate the expression of cell cycle- and apoptosis-related proteins. Importantly, compound I-3 (MY-1442) could significantly inhibit tumor growth in the MGC-803 xenograft tumor model with a TGI rate of 65.5 % at 30 mg/kg/day. Taken together, this work suggested that the coumarin skeleton exhibited great potential to be a key pharmacophore of tubulin polymerization inhibitors for the discovery of anticancer agents.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Colchicina/farmacología , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Simulación del Acoplamiento Molecular , Neoplasias Gástricas/tratamiento farmacológico , Polimerizacion , Proliferación Celular , Sitios de Unión , Cumarinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales
18.
ACS Appl Mater Interfaces ; 16(23): 29917-29929, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38813785

RESUMEN

Radiotherapy commonly causes damage to healthy tissues, particularly radiation-induced skin injury (RISI) that affects a significant majority of patients undergoing radiotherapy. Effective treatments for RISI are lacking. This study focuses on the pathogenesis of RISI, which primarily involves oxidative stress. Excessive reactive oxygen species (ROS) generation during radiation induces damage to biological macromolecules, triggering oxidative stress and inflammation. To address this, ergothioneine (EGT), a natural and biocompatibile thiol compound with excellent antioxidant activity, is explored as a potential radiation-protective agent. By utilizing its specific transport and absorption in the skin tissue, as well as its efficient and stable clearance of radiation-induced "ROS storm", EGT is combined with sodium hyaluronate (NaHA) to develop a novel radiation protective dressing suitable for the skin. This EGT-NaHA dressing demonstrates an effective ability to scavenge free radicals and reduce oxidative stress in vitro and in vivo, reducing cellular apoptosis and inflammation. These results demonstrate the protective properties of EGT against RISI, with far-reaching implications for research and development in the field of radioprotection.


Asunto(s)
Vendajes , Ergotioneína , Ácido Hialurónico , Estrés Oxidativo , Protectores contra Radiación , Piel , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ergotioneína/farmacología , Ergotioneína/química , Animales , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Piel/efectos de los fármacos , Piel/efectos de la radiación , Piel/patología , Ratones , Humanos , Protectores contra Radiación/farmacología , Protectores contra Radiación/química , Protectores contra Radiación/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/prevención & control
19.
Int Immunopharmacol ; 135: 112326, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38796967

RESUMEN

Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the central nervous system. Recent research has revealed that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), containing specific miRNAs, possess immunomodulatory properties and have demonstrated therapeutic potential in the treatment of MS. This study aimed to investigate the role MSC-EVs, containing microRNA-181a-5p (miR-181a-5p) in both experimental autoimmune encephalomyelitis (EAE), an established animal model of MS, and lipopolysaccharide-stimulated BV2 microglia. We evaluated clinical symptoms and inflammatory responses in EAE mice following intrathecal injections of MSC-EVs. MSC-EVs containing miR-181a-5p were co-cultured with microglia to explore their impact on inflammation and cell pyroptosis. We validated the interaction between miR-181a-5p and its downstream regulators and conducted in vivo verification by injecting manipulated EVs containing miR-181a-5p into EAE mice. Our results demonstrated that MSC-EVs, containing miR-181a-5p reduced the clinical symptoms of EAE mice. Furthermore, we observed downregulation of miR-181a-5p in EAE model mice, and its expression was restored after treatment with MSC-EVs, which corresponded to suppressed microglial inflammation and pyroptosis. Additionally, EVs containing miR-181a-5p mitigated spinal cord injury and demyelination in EAE mice. Mechanistically, ubiquitin-specific protease 15 (USP15) exhibited high expression in EAE mice, and miR-181a-5p was specifically targeted and bound to USP15, thereby regulating the RelA/NEK7 axis. In conclusion, MSC-EVs containing miR-181a-5p inhibit microglial inflammation and pyroptosis through the USP15-mediated RelA/NEK7 axis, thus alleviating the clinical symptoms of EAE. These findings present a potential therapeutic approach for the treatment of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Vesículas Extracelulares , Ratones Endogámicos C57BL , MicroARNs , Microglía , Animales , Encefalomielitis Autoinmune Experimental/terapia , Encefalomielitis Autoinmune Experimental/inmunología , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Ratones , Microglía/metabolismo , Femenino , Células Madre Mesenquimatosas/metabolismo , Piroptosis , Línea Celular , Esclerosis Múltiple/terapia , Humanos , Modelos Animales de Enfermedad , Lipopolisacáridos , Enfermedades Desmielinizantes/terapia
20.
Int J Biol Macromol ; 258(Pt 2): 129036, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38151081

RESUMEN

High-fat and high-fructose diet (HFFD) consumption can induce cognitive dysfunction and gut microbiota disorder. In the present study, the effects of the polysaccharides from the fruits of Lycium barbarum L. (LBPs) on HFFD-induced cognitive deficits and gut microbiota dysbiosis were investigated. The results showed that intervention of LBPs (200 mg/kg/day) for 14 weeks could significantly prevent learning and memory deficits in HFFD-fed mice, evidenced by a reduction of latency and increment of crossing parameters of platform quadrant in Morris water maze test. Moreover, oral administration of LBPs enhanced the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor and reduced the activation of glial cells in hippocampus. Besides, LBPs treatment enriched the relative abundances of Allobaculum and Lactococcus and reduced the relative abundance of Proteobacteria in gut bacterial community of HFFD-fed mice, accompanied by increased levels of short-chain fatty acids (SCFAs) as well as expression of associated G protein-coupled receptors. Furthermore, LBPs intervention prevented insulin resistance, obesity and colonic inflammation. Finally, a significant correlation was observed among neuroinflammation associated parameters, gut microbiota and SCFAs through Pearson correlation analysis. Collectively, these findings suggested that the regulation of gut microbiota might be the potential mechanism of LBPs on preventing cognitive dysfunction induced by HFFD.


Asunto(s)
Disfunción Cognitiva , Microbioma Gastrointestinal , Lycium , Ratones , Animales , Glucemia , Frutas , Fructosa , Polisacáridos/farmacología , Dieta , Dieta Alta en Grasa , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA