Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Acad Child Adolesc Psychiatry ; 59(2): 296-308, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30926572

RESUMEN

OBJECTIVE: Clinical diagnosis of autism spectrum disorder (ASD) relies on time-consuming subjective assessments. The primary purpose of this study was to investigate the utility of salivary microRNAs for differentiating children with ASD from peers with typical development (TD) and non-autism developmental delay (DD). The secondary purpose was to explore microRNA patterns among ASD phenotypes. METHOD: This multicenter, prospective, case-control study enrolled 443 children (2-6 years old). ASD diagnoses were based on DSM-5 criteria. Children with ASD or DD were assessed with the Autism Diagnostic Observation Schedule II and Vineland Adaptive Behavior Scales II. MicroRNAs were measured with high-throughput sequencing. Differential expression of microRNAs was compared among the ASD (n = 187), TD (n = 125), and DD (n = 69) groups in the training set (n = 381). Multivariate logistic regression defined a panel of microRNAs that differentiated children with ASD and those without ASD. The algorithm was tested in a prospectively collected naïve set of 62 samples (ASD, n = 37; TD, n = 8; DD, n = 17). Relations between microRNA levels and ASD phenotypes were explored. RESULT: Fourteen microRNAs displayed differential expression (false discovery rate < 0.05) among ASD, TD, and DD groups. A panel of 4 microRNAs (controlling for medical/demographic covariates) best differentiated children with ASD from children without ASD in training (area under the curve = 0.725) and validation (area under the curve = 0.694) sets. Eight microRNAs were associated (R > 0.25, false discovery rate < 0.05) with social affect, and 10 microRNAs were associated with restricted/repetitive behavior. CONCLUSION: Salivary microRNAs are "altered" in children with ASD and associated with levels of ASD behaviors. Salivary microRNA collection is noninvasive, identifying ASD-status with moderate accuracy. A multi-"omic" approach using additional RNA families could improve accuracy, leading to clinical application. CLINICAL TRIAL REGISTRATION INFORMATION: A Salivary miRNA Diagnostic Test for Autism; https://clinicaltrials.gov/; NCT02832557.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , MicroARNs , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Estudios de Casos y Controles , Niño , Preescolar , Humanos , Estudios Prospectivos , Saliva
2.
Autism Res ; 11(9): 1286-1299, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30107083

RESUMEN

Autism spectrum disorder (ASD) is associated with several oropharyngeal abnormalities, including buccal sensory sensitivity, taste and texture aversions, speech apraxia, and salivary transcriptome alterations. Furthermore, the oropharynx represents the sole entry point to the gastrointestinal (GI) tract. GI disturbances and alterations in the GI microbiome are established features of ASD, and may impact behavior through the "microbial-gut-brain axis." Most studies of the ASD microbiome have used fecal samples. Here, we identified changes in the salivary microbiome of children aged 2-6 years across three developmental profiles: ASD (n = 180), nonautistic developmental delay (DD; n = 60), and typically developing (TD; n = 106) children. After RNA extraction and shotgun sequencing, actively transcribing taxa were quantified and tested for differences between groups and within ASD endophenotypes. A total of 12 taxa were altered between the developmental groups and 28 taxa were identified that distinguished ASD patients with and without GI disturbance, providing further evidence for the role of the gut-brain axis in ASD. Group classification accuracy was visualized with receiver operating characteristic curves and validated using a 50/50 hold-out procedure. Five microbial ratios distinguished ASD from TD participants (79.5% accuracy), three distinguished ASD from DD (76.5%), and three distinguished ASD children with/without GI disturbance (85.7%). Taxonomic pathways were assessed using the Kyoto Encyclopedia of Genes and Genomes microbial database and compared with one-way analysis of variance, revealing significant differences within energy metabolism and lysine degradation. Together, these results indicate that GI microbiome disruption in ASD extends to the oropharynx, and suggests oral microbiome profiling as a potential tool to evaluate ASD status. Autism Res 2018, 11: 1286-1299. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Previous research suggests that the bacteria living in the human gut may influence autistic behavior. This study examined genetic activity of microbes living in the mouth of over 300 children. The microbes with differences in children with autism were involved in energy processing and showed potential for identifying autism status.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Microbioma Gastrointestinal/fisiología , Boca/microbiología , Saliva/microbiología , Estudios de Casos y Controles , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA