Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 68(3): 267-278, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36287630

RESUMEN

Bronchopulmonary dysplasia (BPD) is a common lung disease of premature infants. Hyperoxia exposure and microbial dysbiosis are contributors to BPD development. However, the mechanisms linking pulmonary microbial dysbiosis to worsening lung injury are unknown. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that regulates oxidative stress responses and modulates hyperoxia-induced lung injury. We hypothesized that airway dysbiosis would attenuate Nrf2-dependent antioxidant function, resulting in a more severe phenotype of BPD. Here, we show that preterm infants with a Gammaproteobacteria-predominant dysbiosis have increased endotoxin in tracheal aspirates, and mice monocolonized with the representative Gammaproteobacteria Escherichia coli show increased tissue damage compared with germ-free (GF) control mice. Furthermore, we show Nrf2-deficient mice have worse lung structure and function after exposure to hyperoxia when the airway microbiome is augmented with E. coli. To confirm the disease-initiating potential of airway dysbiosis, we developed a novel humanized mouse model by colonizing GF mice with tracheal aspirates from human infants with or without severe BPD, producing gnotobiotic mice with BPD-associated and non-BPD-associated lung microbiomes. After hyperoxia exposure, BPD-associated mice demonstrated a more severe BPD phenotype and increased expression of Nrf2-regulated genes, compared with GF and non-BPD-associated mice. Furthermore, augmenting Nrf2-mediated antioxidant activity by supporting colonization with Lactobacillus species improved dysbiotic-augmented lung injury. Our results demonstrate that a lack of protective pulmonary microbiome signature attenuates an Nrf2-mediated antioxidant response, which is augmented by a respiratory probiotic blend. We anticipate antioxidant pathways will be major targets of future microbiome-based therapeutics for respiratory disease.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Lesión Pulmonar , Neumonía , Animales , Recién Nacido , Humanos , Ratones , Hiperoxia/metabolismo , Lesión Pulmonar/metabolismo , Animales Recién Nacidos , Antioxidantes , Factor 2 Relacionado con NF-E2/genética , Disbiosis , Escherichia coli , Recien Nacido Prematuro , Pulmón/metabolismo , Displasia Broncopulmonar/metabolismo , Neumonía/metabolismo , Oxidación-Reducción , Modelos Animales de Enfermedad
2.
J Infect Dis ; 225(5): 800-809, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34865064

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) disproportionally affects pregnant women and their newborn; however, little is known about variables that modulate maternal-fetal immune response to infection. METHODS: We prospectively studied socioeconomic, biologic, and clinical factors affecting humoral immunity in 87 unvaccinated pregnant women hospitalized in Buenos Aires for symptoms consistent with COVID-19. RESULTS: The number of days between symptom onset and childbirth predicted maternal and newborn virus spike protein receptor binding domain (RBD)-specific immunoglobulin G (IgG). These findings suggest newborns may benefit less when mothers deliver soon after COVID-19 infection. Similarly, a longer time between symptom onset and birth predicted higher in utero transfer of maternal IgG and its concentration in cord blood. Older gestational age at birth was associated with lower maternal to cord blood IgG ratio. Of women with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 87% developed RBD-specific IgA responses in breast milk within 96 hours of childbirth. IgA was not significantly associated with time from infection but correlated with maternal serum IgG and placental transfer. CONCLUSIONS: These results demonstrate the combined role of biologic, clinical, and socioeconomic variables associated with maternal RBD-specific antibodies and supports early vaccination strategies for COVID-19 in socioeconomically vulnerable pregnant women. CLINICAL TRIALS REGISTRATION: NCT04362956.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/transmisión , Inmunoglobulina G/sangre , SARS-CoV-2/inmunología , Adulto , Productos Biológicos , COVID-19/sangre , Prueba Serológica para COVID-19 , Femenino , Humanos , Recién Nacido , Placenta/metabolismo , Embarazo , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus/inmunología , Poblaciones Vulnerables
3.
Respir Res ; 22(1): 57, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596914

RESUMEN

BACKGROUND: MicroRNA (miR) are small conserved RNA that regulate gene expression post-transcription. Previous genome-wide analysis studies in preterm infants indicate that pathways of miR 219-5p are important in infants with Bronchopulmonary Dysplasia (BPD). METHODS: Here we report a prospective cohort study of extremely preterm neonates wherein infants diagnosed with severe BPD expressed increased airway miR-219-5p and decreased platelet derived growth factor receptor alpha (PDGFR-α), a target of mir-219-5p and a key regulator of alveolarization, compared to post-conception age-matched term infants. RESULTS: miR-219-5p was highly expressed in the pulmonary epithelial lining in lungs of infants with BPD by in situ hybridization of human infant lungs. In both in vitro and in vivo (mouse) models of BPD, miR-219-5p was increased on exposure to hyperoxia compared with the normoxia control, with a complementary decrease of PDGFR-α. To further confirm the target relationship between miR-219 and PDGFR-α, pulmonary epithelial cells (MLE12) and lung primary fibroblasts were treated with a mimic of miR-219-5p and a locked nucleic acid (LNA) based inhibitor of miR-219-5p. In comparison with the control group, the level of miR-219 increased significantly after miR-219 mimic treatment, while the level of PDGFR-α declined markedly. LNA exposure increased PDGFR-α. Moreover, in BPD mouse model, over-expression of miR-219-5p inhibited alveolar development, indicated by larger alveolar spaces accompanied by reduced septation. CONCLUSIONS: Taken together, our results demonstrate that increased miR-219-5p contributes to the pathogenesis of BPD by targeting and reducing PDGFR-α. The use of specific miRNA antagonists may be a therapeutic strategy for preventing the development of BPD.


Asunto(s)
Displasia Broncopulmonar/metabolismo , MicroARNs/biosíntesis , Alveolos Pulmonares/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/biosíntesis , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/terapia , Estudios de Cohortes , Presión de las Vías Aéreas Positiva Contínua/métodos , Humanos , Recién Nacido , Recien Nacido Prematuro/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Estudios Prospectivos , Alveolos Pulmonares/patología
4.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1165-L1171, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32292070

RESUMEN

Bronchopulmonary dysplasia (BPD), a long-term respiratory morbidity of prematurity, is characterized by attenuated alveolar and vascular development. Supplemental oxygen and immature antioxidant defenses contribute to BPD development. Our group identified thioredoxin reductase-1 (TXNRD1) as a therapeutic target to prevent BPD. The present studies evaluated the impact of the TXNRD1 inhibitor aurothioglucose (ATG) on pulmonary responses and gene expression in newborn C57BL/6 pups treated with saline or ATG (25 mg/kg ip) within 12 h of birth and exposed to room air (21% O2) or hyperoxia (>95% O2) for 72 h. Purified RNA from lung tissues was sequenced, and differential expression was evaluated. Hyperoxic exposure altered ~2,000 genes, including pathways involved in glutathione metabolism, intrinsic apoptosis signaling, and cell cycle regulation. The isolated effect of ATG treatment was limited primarily to genes that regulate angiogenesis and vascularization. In separate studies, pups were treated as described above and returned to room air until 14 days. Vascular density analyses were performed, and ANOVA indicated an independent effect of hyperoxia on vascular density and alveolar architecture at 14 days. Consistent with RNA-seq analyses, ATG significantly increased vascular density in room air, but not in hyperoxia-exposed pups. These findings provide insights into the mechanisms by which TXNRD1 inhibitors may enhance lung development.


Asunto(s)
Aire , Aurotioglucosa/farmacología , Hiperoxia/patología , Pulmón/irrigación sanguínea , Pulmón/patología , Neovascularización Fisiológica/efectos de los fármacos , Enfermedad Aguda , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , ADN/biosíntesis , Glutatión/metabolismo , Pulmón/efectos de los fármacos , Pulmón/embriología , Ratones Endogámicos C57BL , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/embriología , Alveolos Pulmonares/patología , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos
5.
Nitric Oxide ; 97: 27-32, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32014495

RESUMEN

Hydrogen sulfide, nitric oxide, and carbon monoxide are endogenously produced gases that regulate various signaling pathways. The role of these transmitters is complex as constitutive production of these molecules may have anti-inflammatory, anti-microbial, and/or vasodilatory effects whereas induced production or formation of secondary metabolites may lead to cellular death. Given this fine line between friend and foe, therapeutic attenuation of these molecules' production has involved both inhibition of endogenous formation and therapeutic supplementation. All three gases have been implicated as regulators of critical aspects of neonatal physiology, and in turn, comorbidities including necrotizing enterocolitis, hypoxic ischemic encephalopathy, and pulmonary hypertension. In this review, we present current perspectives on these associations, highlight areas where insights remain sparse, and identify areas for potential for future investigations.


Asunto(s)
Monóxido de Carbono/metabolismo , Gasotransmisores/metabolismo , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Animales , Humanos , Transducción de Señal
6.
BMC Pediatr ; 19(1): 227, 2019 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-31279333

RESUMEN

BACKGROUND: Premature birth is a growing and serious public health problem affecting more than one of every ten infants worldwide. Bronchopulmonary dysplasia (BPD) is the most common neonatal morbidity associated with prematurity and infants with BPD suffer from increased incidence of respiratory infections, asthma, other forms of chronic lung illness, and death (Day and Ryan, Pediatr Res 81: 210-213, 2017; Isayama et la., JAMA Pediatr 171:271-279, 2017). BPD is now understood as a longitudinal disease process influenced by the intrauterine environment during gestation and modulated by gene-environment interactions throughout the neonatal and early childhood periods. Despite of this concept, there remains a paucity of multidisciplinary team-based approaches dedicated to the comprehensive study of this complex disease. METHODS: The Discovery BPD (D-BPD) Program involves a cohort of infants < 1,250 g at birth prospectively followed until 6 years of age. The program integrates analysis of detailed clinical data by machine learning, genetic susceptibility and molecular translation studies. DISCUSSION: The current gap in understanding BPD as a complex multi-trait spectrum of different disease endotypes will be addressed by a bedside-to-bench and bench-to-bedside approach in the D-BPD program. The D-BPD will provide enhanced understanding of mechanisms, evolution and consequences of lung diseases in preterm infants. The D-BPD program represents a unique opportunity to combine the expertise of biologists, neonatologists, pulmonologists, geneticists and biostatisticians to examine the disease process from multiple perspectives with a singular goal of improving outcomes of premature infants. TRIAL REGISTRATION: Does not apply for this study.


Asunto(s)
Displasia Broncopulmonar/epidemiología , Enfermedades del Prematuro/epidemiología , Recién Nacido de muy Bajo Peso , Estudios Multicéntricos como Asunto/métodos , Animales , Displasia Broncopulmonar/complicaciones , Displasia Broncopulmonar/genética , Enfermedad Crónica , Progresión de la Enfermedad , Exposición a Riesgos Ambientales , Femenino , Estudios de Seguimiento , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/genética , Unidades de Cuidado Intensivo Neonatal , Investigación Interdisciplinaria , Colaboración Intersectorial , Enfermedades Pulmonares/etiología , Aprendizaje Automático , Masculino , Ratones , Padres , Estudios Prospectivos , Pruebas de Función Respiratoria , Investigación Biomédica Traslacional
7.
Mol Pharmacol ; 93(5): 427-437, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29476040

RESUMEN

Glutathione-liganded binuclear dinitrosyl iron complex (glut-BDNIC) has been proposed to be a donor of nitric oxide (NO). This study was undertaken to investigate the mechanisms of vasoactivity, systemic hemodynamic effects, and pharmacokinetics of glut-BDNIC. To test the hypothesis that glut-BDNICs vasodilate by releasing NO in its reduced [nitroxyl (HNO)] state, a bioassay method of isolated, preconstricted ovine mesenteric arterial rings was used in the presence of selective scavengers of HNO or NO free radical (NO•); the vasodilatory effects of glut-BDNIC were found to have characteristics similar to those of an HNO donor and markedly different than an NO• donor. In addition, products of the reaction of glut-BDNIC with CPTIO [2-(4-carboxyphenyl)-4,4,5-tetramethyl imidazoline-1-oxyl-3-oxide] were found to have electron paramagnetic characteristics similar to those of an HNO donor compared with an NO• donor. In contrast to S-nitroso-glutathione, which was vasodilative both in vitro and in vivo, the potency of glut-BDNIC-mediated vasodilation was markedly diminished in both rats and sheep. Wire myography showed that plasma albumin contributed to this loss of hypotensive effects, an effect abolished by modification of the cysteine-thiol residue of albumin. High doses of glut-BDNIC caused long-lasting hypotension in rats that can be at least partially attributed to its long circulating half-life of ∼44 minutes. This study suggests that glut-BDNIC is an HNO donor, and that its vasoactive effects are modulated by binding to the cysteine residue of plasma proteins, such as albumin.


Asunto(s)
Glutatión/metabolismo , Hemodinámica/efectos de los fármacos , Hierro/metabolismo , Hierro/farmacología , Óxidos de Nitrógeno/metabolismo , Óxidos de Nitrógeno/farmacología , Albúmina Sérica/metabolismo , Animales , Antihipertensivos/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Hierro/farmacocinética , Ligandos , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Miografía , Donantes de Óxido Nítrico/farmacología , Óxidos de Nitrógeno/farmacocinética , Ratas , Ovinos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
8.
Am J Physiol Lung Cell Mol Physiol ; 315(4): L545-L552, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30024305

RESUMEN

Thioredoxin reductase-1 (TXNRD1) inhibition effectively activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) responses and attenuates lung injury in acute respiratory distress syndrome (ARDS) and bronchopulmonary dysplasia (BPD) models. Upon TXNRD1 inhibition, heme oxygenase-1 (HO-1) is disproportionally increased compared with Nrf2 target NADPH quinone oxidoreductase-1 (Nqo1). HO-1 has been investigated as a potential therapeutic target in both ARDS and BPD. TXNRD1 is predominantly expressed in airway epithelial cells; however, the mechanism of HO-1 induction by TXNRD1 inhibitors is unknown. We tested the hypothesis that TXNRD1 inhibition induces HO-1 via Nrf2-dependent mechanisms. Wild-type (WT), Nrf2KO1.3, and Nrf2KO2.2 cells were morphologically indistinguishable, indicating that Nrf2 can be deleted from murine-transformed club cells (mtCCs) using CRISPR/Cas9 gene editing. Hemin, a Nrf2-independent HO-1-inducing agent, significantly increased HO-1 expression in WT, Nrf2KO1.3, and Nrf2KO2.2. Auranofin (AFN) (0.5 µM) inhibited TXNRD1 activity by 50% and increased Nqo1 and Hmox1 mRNA levels by 6- and 24-fold, respectively, in WT cells. Despite similar levels of TXNRD1 inhibition, Nqo1 mRNA levels were not different between control and AFN-treated Nrf2KO1.3 and Nrf2KO2.2. AFN slightly increased Hmox1 mRNA levels in Nrf2KO1.3 and Nrf2KO2.2 cells compared with controls. AFN failed to increase HO-1 protein in Nrf2KO1.3 and Nrf2KO2.2 compared with a 36-fold increase in WT mtCCs. Our data indicate that Nrf2 is the primary mechanism by which TXNRD1 inhibitors increase HO-1 in lung epithelia. Future studies will use ARDS and BPD models to define the role of HO-1 in attenuation of lung injury by TXNRD1 inhibitors.


Asunto(s)
Auranofina/farmacología , Células Epiteliales/enzimología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Pulmón/enzimología , Proteínas de la Membrana/metabolismo , Factor 2 Relacionado con NF-E2/fisiología , Tiorredoxina Reductasa 1/fisiología , Animales , Antirreumáticos/farmacología , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Pulmón/efectos de los fármacos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Tiorredoxina Reductasa 1/antagonistas & inhibidores
9.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L736-L742, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29368550

RESUMEN

We previously showed that the thioredoxin reductase-1 (TrxR1) inhibitor aurothioglucose (ATG) improves alveolarization in hyperoxia-exposed newborn C3H/HeN mice. Our data supported a mechanism by which the protective effects of ATG are mediated via sustained nuclear factor E2-related factor 2 (Nrf2) activation in hyperoxia-exposed C3H/HeN mice 72 h after ATG administration. Given that inbred mouse strains have differential sensitivity and endogenous Nrf2 activation by hyperoxia, the present studies utilized two C57BL/6 exposure models to evaluate the effects of ATG on lung development and Nrf2 activation. The first model (0-14 days) was used in our C3H/HeN studies and the 2nd model (4-14 days) is well characterized in C57BL/6 mice. ATG significantly inhibited lung TrxR1 activity in both models; however, there was no effect on parameters of alveolarization in C57BL/6 mice. In sharp contrast to C3H/HeN mice, there was no effect of ATG on pulmonary NADPH quinone oxidoreductase-1 ( Nqo1) and heme oxygenase-1 ( Hmox1) at 72 h in either C57BL/6 model. In conclusion, although ATG inhibited TrxR1 activity in the lungs of newborn C57BL/6 mice, effects on lung development and sustained Nrf2-dependent pulmonary responses were blunted. These findings also highlight the importance of strain-dependent hyperoxic sensitivity in evaluation of potential novel therapies.


Asunto(s)
Aurotioglucosa/farmacología , Displasia Broncopulmonar/patología , Regulación de la Expresión Génica/efectos de los fármacos , Pulmón/citología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Alveolos Pulmonares/citología , Tiorredoxina Reductasa 1/metabolismo , Animales , Animales Recién Nacidos , Antirreumáticos/farmacología , Displasia Broncopulmonar/tratamiento farmacológico , Displasia Broncopulmonar/metabolismo , Células Cultivadas , Femenino , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , NAD(P)H Deshidrogenasa (Quinona)/genética , Factor 2 Relacionado con NF-E2/genética , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Tiorredoxina Reductasa 1/genética
10.
Respir Res ; 19(1): 229, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463566

RESUMEN

BACKGROUND: Hyperoxia is a frequently employed therapy for prematurely born infants, induces lung injury and contributes to development of bronchopulmonary dysplasia (BPD). BPD is characterized by decreased cellular proliferation, cellular migration, and failure of injury repair systems. Actin binding proteins (ABPs) such as VASP, cofilin1, and profilin1 regulate cell proliferation and migration via modulation of actin dynamics. Lung mesenchymal stem cells (L-MSCs) initiate repair processes by proliferating, migrating, and localizing to sites of injury. These processes have not been extensively explored in hyperoxia induced lung injury and repair. METHODS: ABPs and CD146+ L-MSCs were analyzed by immunofluorescence in human lung autopsy tissues from infants with and without BPD and by western blot in lung tissue homogenates obtained from our murine model of newborn hyperoxic lung injury. RESULTS: Decreased F-actin content, ratio of VASPpS157/VASPpS239, and profilin 1 expression were observed in human lung tissues but this same pattern was not observed in lungs from hyperoxia-exposed newborn mice. Increases in cofilin1 expression were observed in both human and mouse tissues at 7d indicating a dysregulation in actin dynamics which may be related to altered growth. CD146 levels were elevated in human and newborn mice tissues (7d). CONCLUSION: Altered phosphorylation of VASP and expression of profilin 1 and cofilin 1 in human tissues indicate that the pathophysiology of BPD involves dysregulation of actin binding proteins. Lack of similar changes in a mouse model of hyperoxia exposure imply that disruption in actin binding protein expression may be linked to interventions or morbidities other than hyperoxia alone.


Asunto(s)
Displasia Broncopulmonar/metabolismo , Moléculas de Adhesión Celular/metabolismo , Cofilina 1/biosíntesis , Hiperoxia/metabolismo , Lesión Pulmonar/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Profilinas/biosíntesis , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/patología , Cofilina 1/genética , Femenino , Expresión Génica , Humanos , Hiperoxia/patología , Recién Nacido , Lesión Pulmonar/patología , Ratones , Ratones Endogámicos C3H , Fosforilación/fisiología , Embarazo , Profilinas/genética , Distribución Aleatoria
11.
Nitric Oxide ; 79: 57-67, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30059767

RESUMEN

Dinitrosyl iron complexes (DNICs) are important intermediates in the metabolism of nitric oxide (NO). They have been considered to be NO storage adducts able to release NO, scavengers of excess NO during inflammatory hypotensive shock, and mediators of apoptosis in cancer cells, among many other functions. Currently, all studies of DNICs in biological matrices use electron paramagnetic resonance (EPR) for both detection and quantification. EPR is limited, however, by its ability to detect only paramagnetic mononuclear DNICs even though EPR-silent binuclear are likely to be prevalent. Furthermore, physiological concentrations of mononuclear DNICs are usually lower than the EPR detection limit (1 µM). We have thus developed a chemiluminescence-based method for the selective detection of both DNIC forms at physiological, pathophysiological, and pharmacologic conditions. We have also demonstrated the use of the new method in detecting DNIC formation in the presence of nitrite and nitrosothiols within biological fluids and tissue. This new method, which can be used alone or in tandem with EPR, has the potential to offer insight about the involvement of DNICs in many NO-dependent pathways.


Asunto(s)
Hierro/análisis , Luminiscencia , Óxidos de Nitrógeno/análisis , Ozono/química , Animales , Ovinos
12.
Nitric Oxide ; 75: 60-69, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29428841

RESUMEN

Nitrite and S-nitrosothiols (SNOs) are both byproducts of nitric oxide (NO) metabolism and are proposed to cause vasodilation via activation of soluble guanylate cyclase (sGC). We have previously reported that while SNOs are potent vasodilators at physiological concentrations, nitrite itself only produces vasodilation at supraphysiological concentrations. Here, we tested the hypothesis that sub-vasoactive concentrations of nitrite potentiate the vasodilatory effects of SNOs. Multiple exposures of isolated sheep arteries to S-nitroso-glutathione (GSNO) resulted in a tachyphylactic decreased vasodilatory response to GSNO but not to NO, suggesting attenuation of signaling steps upstream from sGC. Exposure of arteries to 1 µM nitrite potentiated the vasodilatory effects of GSNO in naive arteries and abrogated the tachyphylactic response to GSNO in pre-exposed arteries, suggesting that nitrite facilitates GSNO-mediated activation of sGC. In intact anesthetized sheep and rats, inhibition of NO synthases to decrease plasma nitrite levels attenuated vasodilatory responses to exogenous infusions of GSNO, an effect that was reversed by exogenous infusion of nitrite at sub-vasodilating levels. This study suggests nitrite potentiates SNO-mediated vasodilation via a mechanism that lies upstream from activation of sGC.


Asunto(s)
Óxido Nítrico/metabolismo , Nitritos/metabolismo , S-Nitrosotioles/metabolismo , Vasodilatadores/metabolismo , Animales , Arterias/efectos de los fármacos , Arterias/fisiología , GMP Cíclico/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Cisteína/farmacología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/farmacología , Nitritos/farmacología , Ratas , S-Nitrosoglutatión/metabolismo , S-Nitrosoglutatión/farmacología , S-Nitrosotioles/farmacología , Ovinos , Transducción de Señal , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Vasodilatadores/farmacología
13.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L339-L349, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28473324

RESUMEN

Even with advances in the care of preterm infants, chronic lung disease or bronchopulmonary dysplasia (BPD) continues to be a significant pulmonary complication. Among those diagnosed with BPD, a subset of infants develop severe BPD with disproportionate pulmonary morbidities. In addition to decreased alveolarization, these infants develop obstructive and/or restrictive lung function due to increases in or dysregulation of extracellular matrix proteins. Analyses of plasma obtained from preterm infants during the first week of life indicate that circulating miR-29b is suppressed in infants that subsequently develop BPD and that decreased circulating miR-29b is inversely correlated with BPD severity. Our mouse model mimics the pathophysiology observed in infants with severe BPD, and we have previously reported decreased pulmonary miR-29b expression in this model. The current studies tested the hypothesis that adeno-associated 9 (AAV9)-mediated restoration of miR-29b in the developing lung will improve lung alveolarization and minimize the deleterious changes in matrix deposition. Pregnant C3H/HeN mice received an intraperitoneal LPS injection on embryonic day 16 and newborn pups were exposed to 85% oxygen from birth to 14 days of life. On postnatal day 3, AAV9-miR-29b or AAV9-control was administered intranasally. Mouse lung tissues were then analyzed for changes in miR-29 expression, alveolarization, and matrix protein levels and localization. Although only modest improvements in alveolarization were detected in the AAV9-miR29b-treated mice at postnatal day 28, treatment completely attenuated defects in matrix protein expression and localization. Our data suggest that miR-29b restoration may be one component of a novel therapeutic strategy to treat or prevent severe BPD in prematurely born infants.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Hiperoxia/metabolismo , Inflamación/metabolismo , MicroARNs/metabolismo , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C3H , Oxígeno/administración & dosificación
14.
Am J Respir Cell Mol Biol ; 55(3): 419-28, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27089175

RESUMEN

Oxygen toxicity and antioxidant deficiencies contribute to the development of bronchopulmonary dysplasia. Aurothioglucose (ATG) and auranofin potently inhibit thioredoxin reductase-1 (TrxR1), and TrxR1 disruption activates nuclear factor E2-related factor 2 (Nrf2), a regulator of endogenous antioxidant responses. We have shown previously that ATG safely and effectively prevents lung injury in adult murine models, likely via Nrf2-dependent mechanisms. The current studies tested the hypothesis that ATG would attenuate hyperoxia-induced lung developmental deficits in newborn mice. Newborn C3H/HeN mice were treated with a single dose of ATG or saline within 12 hours of birth and were exposed to either room air or hyperoxia (85% O2). In hyperoxia, ATG potently inhibited TrxR1 activity in newborn murine lungs, attenuated decreases in body weight, increased the transcription of Nrf2-regulated genes nicotinamide adenine dinucleotide phosphate reduced quinone oxidoreductase-1 (NQO1) and heme oxygenase 1, and attenuated alterations in alveolar development. To determine the impact of TrxR1 inhibition on Nrf2 activation in vitro, murine alveolar epithelial-12 cells were treated with auranofin, which inhibited TrxR1 activity, enhanced Nrf2 nuclear levels, and increased NQO1 and heme oxygenase 1 transcription. Our novel data indicate that a single injection of the TrxR1 inhibitor ATG attenuates hyperoxia-induced alterations in alveolar development in newborn mice. Furthermore, our data support a model in which the effects of ATG treatment likely involve Nrf2 activation, which is consistent with our findings in other lung injury models. We conclude that TrxR1 represents a novel therapeutic target to prevent oxygen-mediated neonatal lung injury.


Asunto(s)
Hiperoxia/complicaciones , Hiperoxia/enzimología , Lesión Pulmonar/complicaciones , Lesión Pulmonar/enzimología , Factor 2 Relacionado con NF-E2/metabolismo , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Auranofina/farmacología , Aurotioglucosa/farmacología , Peso Corporal/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Hiperoxia/patología , Lesión Pulmonar/patología , Ratones , Ratones Endogámicos C3H , Morfogénesis/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L981-L984, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27694474

RESUMEN

We previously demonstrated that decreased miR-17∼92 cluster expression was 1) present in lungs from human infants who died with bronchopulmonary dysplasia (BPD); 2) inversely correlated with DNA methyltransferase (DNMT) expression and promoter methylation; and 3) correlated with a subsequent diagnosis of BPD at 36 wk gestational age. We tested the hypothesis that plasma miR-17 levels would be lowest in infants who ultimately develop severe BPD. Secondly, we utilized our well-characterized murine model of severe BPD that combines perinatal inflammation with postnatal hyperoxia to test the hypothesis that alterations in lung miR-17∼92, DNMT, and promoter methylation in our model would mirror our findings in tissues from premature human infants. Plasma was obtained during the first 5 days of life from premature infants born ≤32 wk gestation. Lung tissues were harvested from mice exposed to maternal inflammation and neonatal hyperoxia for 14 days after birth. miR-17∼92 cluster expression and DNA methyltransferase expression were measured by qRT-PCR, and promoter methylation was assessed by Methyl-Profiler assay. Plasma miR-17 levels are significantly lower in the first week of life in human infants who develop severe BPD compared with mild or moderate BPD. Data from our severe BPD murine model reveal that lung miR-17∼92 cluster expression is significantly attenuated, and levels inversely correlated with DNMT expression and miR-17∼92 cluster promoter methylation. Collectively, our data support a plausible role for epigenetically altered miR-17∼92 cluster in the pathogenesis of severe BPD.


Asunto(s)
Displasia Broncopulmonar/genética , Metilación de ADN/genética , Regulación de la Expresión Génica , MicroARNs/genética , Regiones Promotoras Genéticas , Animales , Displasia Broncopulmonar/sangre , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Hiperoxia/genética , Hiperoxia/patología , Recién Nacido , Inflamación/genética , Inflamación/patología , Pulmón/enzimología , Pulmón/patología , Masculino , Ratones , MicroARNs/sangre , ARN Largo no Codificante
16.
Brain Behav Immun ; 58: 369-378, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27519153

RESUMEN

Maternal obesity induces chronic inflammatory responses that impact the fetus/neonate during the perinatal period. Inflammation, iron regulation, and myelination are closely interconnected and disruptions in these processes may have deleterious effects on neurodevelopment. Hepcidin levels are increased in response to inflammation causing subsequent decreases in ferroportin and available iron needed for myelination. Our current studies were designed to test the hypotheses that: 1) maternal high fat diet (HFD) prior to and during pregnancy is sufficient to induce inflammation and alter iron regulation in the brain of the offspring, and 2) HFD exposure is associated with altered myelination and neurobehavioral deficits in the offspring. Our data revealed modest increases in inflammatory cytokines in the serum of dams fed HFD prior to pregnancy compared to dams fed a control diet (CD). Early increases in IL-5 and decreases in IL-10 were observed in serum at PN7 while IL-5 remained elevated at PN21 in the HFD-exposed pups. At PN0, most cytokine levels in whole brain homogenates were higher in the pups born to HFD-fed dams but were not different or were lower than in pups born to CD-fed dams at PN21. Conversely, the inflammation mediated transcription factor Nurr77 remained elevated at PN21. At birth, brain hepcidin, ferroportin, and l-ferritin levels were elevated in pups born to HFD-fed dams compared to pups born to CD-fed dams. Hepcidin levels remained elevated at PN7 and PN21 while ferroportin and l-ferritin levels were lower at PN7 and were not different at PN21. Decreases in myelination in the medial cortex were observed in male but not in female pups born to maternal HFD-fed dams at PN21. These structural changes correlated with changes in behavior (novel object recognition) in at 4months in males only. Our data indicate that maternal obesity (HFD) results in disruption of iron regulation in the brains of the offspring with structural and neurobehavioral deficits in males.


Asunto(s)
Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Hepcidinas/metabolismo , Vaina de Mielina/metabolismo , Obesidad/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/psicología , Animales , Conducta Animal , Encéfalo/patología , Citocinas/metabolismo , Encefalitis/metabolismo , Femenino , Expresión Génica , Hierro/metabolismo , Masculino , Ratones Endogámicos C57BL , Embarazo , ARN Mensajero/metabolismo , Reconocimiento en Psicología , Caracteres Sexuales
17.
Am J Physiol Lung Cell Mol Physiol ; 309(5): L441-8, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26138643

RESUMEN

We have previously shown that an adverse perinatal environment significantly alters lung growth and development and results in persistently altered cardiopulmonary physiology in adulthood. Our model of maternal LPS treatment followed by 14 days of neonatal hyperoxia exposure causes severe pulmonary disease characterized by permanent decreases in alveolarization and diffuse interstitial fibrosis. The current investigations tested the hypothesis that dysregulation of Notch signaling pathways contributes to the permanently altered lung phenotype in our model and that the improvements we have observed previously with maternal docosahexaenoic acid (DHA) supplementation are mediated through normalization of Notch-related protein expression. Results indicated that inflammation (IL-6 levels) and oxidation (F2a-isoprostanes) persisted through 8 wk of life in mice exposed to LPS/O2 perinatally. These changes were attenuated by maternal DHA supplementation. Modest but inconsistent differences were observed in Notch-pathway proteins Jagged 1, DLL 1, PEN2, and presenilin-2. We detected substantial increases in markers of apoptosis including PARP-1, APAF-1, caspase-9, BCL2, and HMGB1, and these increases were attenuated in mice that were nursed by DHA-supplemented dams during the perinatal period. Although Notch signaling is not significantly altered at 8 wk of age in mice with perinatal exposure to LPS/O2, our findings indicate that persistent apoptosis continues to occur at 8 wk of age. We speculate that ongoing apoptosis may contribute to persistently altered lung development and may further enhance susceptibility to additional pulmonary disease. Finally, we found that maternal DHA supplementation prevented sustained inflammation, oxidation, and apoptosis in our model.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Inflamación/tratamiento farmacológico , Enfermedades Pulmonares/tratamiento farmacológico , Pulmón/patología , Receptores Notch/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Hipoxia de la Célula/fisiología , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/uso terapéutico , Femenino , Proteína HMGB1/metabolismo , Hiperoxia/patología , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interleucina-6/metabolismo , Proteína Jagged-1 , Lipopolisacáridos , Enfermedades Pulmonares/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C3H , Estrés Oxidativo/efectos de los fármacos , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal/efectos de los fármacos
18.
Am J Physiol Lung Cell Mol Physiol ; 307(2): L197-204, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24879052

RESUMEN

Vascular remodeling and smooth muscle cell proliferation are hallmark pathogenic features of pulmonary artery hypertension. MicroRNAs, endogenously expressed small noncoding RNAs, regulate gene expression at the posttranscriptional level. It has previously been shown that miR-17 overexpression in cultured human pulmonary artery smooth muscle cell (hPASMC) resulted in increased viable cell number. Previously, we have found that arginase II promotes hypoxia-induced proliferation in hPASMC. Therefore, we hypothesized that miR-17 would be upregulated by hypoxia in hPASMC and would result in greater arginase II expression. We found that levels of miR-17-5p and arginase II were significantly greater in cultured hPASMC exposed to 1% O2 for 48 h than in hPASMC exposed to 21% O2 for 48 h. Furthermore, inhibiting miR-17-5p expression decreased hypoxia-induced arginase II protein levels in hPASMC. Conversely, overexpressing miR-17-5p resulted in greater arginase II protein levels. Somewhat surprisingly, arginase II inhibition was associated with lower miR-17-5p expression in both normoxic and hypoxic hPASMC, whereas overexpressing arginase II resulted in greater miR-17-5p expression in hPASMC. These findings suggest that hypoxia-induced arginase II expression is not only regulated by miR-17-5p but also that there is a feedback loop between arginase II and miR-17-5p in hPASMC. We also found that the arginase II-mediated regulation of miR-17-5p was independent of either p53 or c-myc. We also found that l-arginine, the substrate for arginase II, and l-ornithine, the amino acid product of arginase II, were not involved in the regulation of miR-17-5p expression.


Asunto(s)
Arginasa/fisiología , MicroARNs/fisiología , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Arginasa/antagonistas & inhibidores , Arginasa/biosíntesis , Hipoxia de la Célula/fisiología , Células Cultivadas , Retroalimentación , Humanos , MicroARNs/biosíntesis , Arteria Pulmonar/citología , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba
19.
J Nutr ; 144(3): 258-66, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24453131

RESUMEN

The preterm infant is often exposed to maternal and neonatal inflammatory stimuli and is born with immature lungs, resulting in a need for oxygen therapy. Nutritional intervention with docosahexaenoic acid (DHA; 6.3 g/kg of diet) has been shown to attenuate inflammation in various human diseases. Previous studies demonstrated that maternal DHA supplementation during late gestation and lactation attenuated hyperoxic lung injury in newborn mouse pups. In the present studies, we tested the hypothesis that DHA supplementation to the dam would reduce hyperoxic lung injury and growth deficits in a more severe model of systemic maternal inflammation, including lipopolysaccharide (LPS) and neonatal hyperoxia exposure. On embryonic day 16, dams were placed on DHA (6.3 g DHA/kg diet) or control diets and injected with saline or LPS. Diets were maintained through weaning. At birth, pups were placed in room air or hyperoxia for 14 d. Improvements in birth weight (P < 0.01), alveolarization (P ≤ 0.01), and pulmonary function (P ≤ 0.03) at 2 and 8 wk of age were observed in pups exposed to perinatal inflammation and born to DHA-supplemented dams compared with control diet-exposed pups. These improvements were associated with decreases in tissue macrophage numbers (P < 0.01), monocyte chemoattractant protein-1 expression (P ≤ 0.05), and decreases in soluble receptor for advanced glycation end products concentrations (P < 0.01) at 2 and 8 wk. Furthermore, DHA supplementation attenuated pulmonary fibrosis, which was associated with the reduction of matrix metalloproteinases 2, 3, and 8 (P ≤ 0.03) and collagen mRNA (P ≤ 0.05), and decreased collagen (P < 0.01) and vimentin (P ≤ 0.03) protein concentrations. In a model of severe inflammation, maternal DHA supplementation lessened inflammation and improved lung growth in the offspring. Maternal supplementation with DHA may be a therapeutic strategy to reduce neonatal inflammation.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Retardo del Crecimiento Fetal/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Fenómenos Fisiologicos Nutricionales Maternos , Animales , Animales Recién Nacidos , Peso al Nacer , Quimiocina CCL2/metabolismo , Dieta , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Hiperoxia/tratamiento farmacológico , Lipopolisacáridos/efectos adversos , Pulmón/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Fosforilación , ARN Mensajero/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
20.
J Vis Exp ; (209)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39072632

RESUMEN

The preterm neonatal airway epithelium is constantly exposed to environmental stressors. One of these stressors in neonates with lung disease includes oxygen (O2) tension higher than the ambient atmosphere - termed hyperoxia (>21% O2). The effect of hyperoxia on the airway depends on various factors, including the developmental stage of the airway, the degree of hyperoxia, and the duration of exposure, with variable exposures potentially leading to unique phenotypes. While there has been extensive research on the effect of hyperoxia on neonatal lung alveolarization and airway hyperreactivity, little is known about the short and long-term underlying effect of hyperoxia on human neonatal airway epithelial cells. A major reason for this is the scarcity of an effective in vitro model to study human neonatal airway epithelial development and function. Here, we describe a method for isolating and expanding human neonatal tracheal airway epithelial cells (nTAECs) utilizing human neonatal tracheal aspirates and culturing these cells in air-liquid interface (ALI) culture. We demonstrate that nTAECs form a mature polarized cell-monolayer in ALI culture and undergo mucociliary differentiation. We also present a method for moderate hyperoxia exposure of the cell monolayer in ALI culture using a specialized incubator. Additionally, we describe an assay to measure cellular oxidative stress following hyperoxia exposure in ALI culture using fluorescent quantification, which confirms that moderate hyperoxia exposure induces cellular oxidative stress but does not cause significant cell membrane damage or apoptosis. This model can potentially be used to simulate clinically relevant hyperoxia exposure encountered by neonatal airways in the Neonatal Intensive Care Unit (NICU) and used to study the short and long-lasting effects of O2 on neonatal airway epithelial programming. Studies using this model could be utilized to explore ways to mitigate early-life oxidative injury to developing airways, which is implicated in the development of long-term airway diseases in former premature infants.


Asunto(s)
Células Epiteliales , Hiperoxia , Humanos , Recién Nacido , Hiperoxia/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/citología , Tráquea/citología , Tráquea/metabolismo , Técnicas de Cultivo Tridimensional de Células/métodos , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Técnicas de Cultivo de Célula/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA