Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 500(7463): 458-62, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23913275

RESUMEN

Neuromodulatory control by oxytocin is essential to a wide range of social, parental and stress-related behaviours. Autism spectrum disorders (ASD) are associated with deficiencies in oxytocin levels and with genetic alterations of the oxytocin receptor (OXTR). Thirty years ago, Mühlethaler et al. found that oxytocin increases the firing of inhibitory hippocampal neurons, but it remains unclear how elevated inhibition could account for the ability of oxytocin to improve information processing in the brain. Here we describe in mammalian hippocampus a simple yet powerful mechanism by which oxytocin enhances cortical information transfer while simultaneously lowering background activity, thus greatly improving the signal-to-noise ratio. Increased fast-spiking interneuron activity not only suppresses spontaneous pyramidal cell firing, but also enhances the fidelity of spike transmission and sharpens spike timing. Use-dependent depression at the fast-spiking interneuron-pyramidal cell synapse is both necessary and sufficient for the enhanced spike throughput. We show the generality of this novel circuit mechanism by activation of fast-spiking interneurons with cholecystokinin or channelrhodopsin-2. This provides insight into how a diffusely delivered neuromodulator can improve the performance of neural circuitry that requires synapse specificity and millisecond precision.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Hipocampo/citología , Interneuronas/efectos de los fármacos , Oxitocina/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Encéfalo/metabolismo , Colecistoquinina/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación Fisiológica/efectos de los fármacos , Glicina/farmacología , Hipocampo/fisiología , Interneuronas/metabolismo , Ratones , Vías Nerviosas/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Receptores de Oxitocina/agonistas , Receptores de Oxitocina/metabolismo , Rodopsina/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Treonina/farmacología
2.
Nat Commun ; 15(1): 5512, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951525

RESUMEN

Microglia are important players in surveillance and repair of the brain. Implanting an electrode into the cortex activates microglia, produces an inflammatory cascade, triggers the foreign body response, and opens the blood-brain barrier. These changes can impede intracortical brain-computer interfaces performance. Using two-photon imaging of implanted microelectrodes, we test the hypothesis that low-intensity pulsed ultrasound stimulation can reduce microglia-mediated neuroinflammation following the implantation of microelectrodes. In the first week of treatment, we found that low-intensity pulsed ultrasound stimulation increased microglia migration speed by 128%, enhanced microglia expansion area by 109%, and a reduction in microglial activation by 17%, indicating improved tissue healing and surveillance. Microglial coverage of the microelectrode was reduced by 50% and astrocytic scarring by 36% resulting in an increase in recording performance at chronic time. The data indicate that low-intensity pulsed ultrasound stimulation helps reduce the foreign body response around chronic intracortical microelectrodes.


Asunto(s)
Electrodos Implantados , Microelectrodos , Microglía , Ondas Ultrasónicas , Microglía/efectos de la radiación , Microglía/metabolismo , Animales , Masculino , Reacción a Cuerpo Extraño/prevención & control , Reacción a Cuerpo Extraño/etiología , Ratones , Corteza Cerebral/efectos de la radiación , Corteza Cerebral/citología , Interfaces Cerebro-Computador , Movimiento Celular/efectos de la radiación , Ratas
3.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38105969

RESUMEN

Microglia are important players in surveillance and repair of the brain. Their activation mediates neuroinflammation caused by intracortical microelectrode implantation, which impedes the application of intracortical brain-computer interfaces (BCIs). While low-intensity pulsed ultrasound stimulation (LIPUS) can attenuate microglial activation, its potential to modulate the microglia-mediated neuroinflammation and enhance the bio-integration of microelectrodes remains insufficiently explored. We found that LIPUS increased microglia migration speed from 0.59±0.04 to 1.35±0.07 µm/hr on day 1 and enhanced microglia expansion area from 44.50±6.86 to 93.15±8.77 µm 2 /min on day 7, indicating improved tissue healing and surveillance. Furthermore, LIPUS reduced microglial activation by 17% on day 6, vessel-associated microglia ratio from 70.67±6.15 to 40.43±3.87% on day 7, and vessel diameter by 20% on day 28. Additionally, microglial coverage of the microelectrode was reduced by 50% in week 1, indicating better tissue-microelectrode integration. These data reveal that LIPUS helps resolve neuroinflammation around chronic intracortical microelectrodes.

5.
Neuron ; 100(3): 593-608.e3, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30293821

RESUMEN

Oxytocin is an important neuromodulator in the mammalian brain that increases information salience and circuit plasticity, but its signaling mechanisms and circuit effect are not fully understood. Here we report robust oxytocinergic modulation of intrinsic properties and circuit operations in hippocampal area CA2, a region of emerging importance for hippocampal function and social behavior. Upon oxytocin receptor activation, CA2 pyramidal cells depolarize and fire bursts of action potentials, a consequence of phospholipase C signaling to modify two separate voltage-dependent ionic processes. A reduction of potassium current carried by KCNQ-based M channels depolarizes the cell; protein kinase C activity attenuates spike rate of rise and overshoot, dampening after-hyperpolarizations. These actions, in concert with activation of fast-spiking interneurons, promote repetitive firing and CA2 bursting; bursting then governs short-term plasticity of CA2 synaptic transmission onto CA1 and, thus, efficacy of information transfer in the hippocampal network.


Asunto(s)
Potenciales de Acción/fisiología , Región CA2 Hipocampal/metabolismo , Neuronas/metabolismo , Oxitocina/biosíntesis , Animales , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxitocina/genética , Receptores de Oxitocina/biosíntesis , Receptores de Oxitocina/genética
6.
Nat Commun ; 9(1): 2451, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934532

RESUMEN

Learning and memory depend on neuronal plasticity originating at the synapse and requiring nuclear gene expression to persist. However, how synapse-to-nucleus communication supports long-term plasticity and behavior has remained elusive. Among cytonuclear signaling proteins, γCaMKII stands out in its ability to rapidly shuttle Ca2+/CaM to the nucleus and thus activate CREB-dependent transcription. Here we show that elimination of γCaMKII prevents activity-dependent expression of key genes (BDNF, c-Fos, Arc), inhibits persistent synaptic strengthening, and impairs spatial memory in vivo. Deletion of γCaMKII in adult excitatory neurons exerts similar effects. A point mutation in γCaMKII, previously uncovered in a case of intellectual disability, selectively disrupts CaM sequestration and CaM shuttling. Remarkably, this mutation is sufficient to disrupt gene expression and spatial learning in vivo. Thus, this specific form of cytonuclear signaling plays a key role in learning and memory and contributes to neuropsychiatric disease.


Asunto(s)
Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Potenciación a Largo Plazo , Memoria/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Puntual , Cultivo Primario de Células , Ratas Sprague-Dawley , Aprendizaje Espacial/fisiología
7.
Neuron ; 82(5): 939-40, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24908477

RESUMEN

Tight regulation of calcium entry through the L-type calcium channel CaV1.2 ensures optimal excitation-response coupling. In this issue of Neuron, Michailidis et al. (2014) demonstrate that CaV1.2 activity triggers negative feedback regulation through proteolytic cleavage of the channel within the core of the pore-forming subunit.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Neuronas/metabolismo , Proteolisis , Animales , Femenino , Masculino
8.
J Comp Neurol ; 520(10): 2202-17, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22237661

RESUMEN

The medial superior olive (MSO) is a key auditory brainstem structure that receives binaural inputs and is implicated in processing interaural time disparities used for sound localization. The deaf white cat, a proven model of congenital deafness, was used to examine how deafness and cochlear implantation affected the synaptic organization at this binaural center in the ascending auditory pathway. The patterns of axosomatic and axodendritic organization were determined for principal neurons from the MSO of hearing, deaf, and deaf cats with cochlear implants. The nature of the synapses was evaluated through electron microscopy, ultrastructure analysis of the synaptic vesicles, and immunohistochemistry. The results show that the proportion of inhibitory axosomatic terminals was significantly smaller in deaf animals when compared with hearing animals. However, after a period of electrical stimulation via cochlear implants the proportion of inhibitory inputs resembled that of hearing animals. Additionally, the excitatory axodendritic boutons of hearing cats were found to be significantly larger than those of deaf cats. Boutons of stimulated cats were significantly larger than the boutons in deaf cats, although not as large as in the hearing cats, indicating a partial recovery of excitatory inputs to MSO dendrites after stimulation. These results exemplify dynamic plasticity in the auditory brainstem and reveal that electrical stimulation through cochlear implants has a restorative effect on synaptic organization in the MSO.


Asunto(s)
Implantación Coclear/métodos , Sordera/patología , Sordera/terapia , Plasticidad Neuronal/fisiología , Núcleo Olivar/patología , Animales , Vías Auditivas/patología , Vías Auditivas/ultraestructura , Gatos , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Tomografía con Microscopio Electrónico , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Núcleo Olivar/fisiopatología , Sinapsis/metabolismo , Sinapsis/patología , Sinapsis/ultraestructura , Vesículas Sinápticas/ultraestructura , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA