Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(19): 7559-7567, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37146013

RESUMEN

Oil and gas development generates large amounts of wastewater (i.e., produced water), which in California has been partially disposed of in unlined percolation/evaporation ponds since the mid-20th century. Although produced water is known to contain multiple environmental contaminants (e.g., radium and trace metals), prior to 2015, detailed chemical characterizations of pondwaters were the exception rather than the norm. Using a state-run database, we synthesized samples (n = 1688) collected from produced water ponds within the southern San Joaquin Valley of California, one of the most productive agricultural regions in the world, to examine regional trends in pondwater arsenic and selenium concentrations. We filled crucial knowledge gaps resulting from historical pondwater monitoring by constructing random forest regression models using commonly measured analytes (boron, chloride, and total dissolved solids) and geospatial data (e.g., soil physiochemical data) to predict arsenic and selenium concentrations in historical samples. Our analysis suggests that both arsenic and selenium levels are elevated in pondwaters and thus this disposal practice may have contributed substantial amounts of arsenic and selenium to aquifers having beneficial uses. We further use our models to identify areas where additional monitoring infrastructure would better constrain the extent of legacy contamination and potential threats to groundwater quality.


Asunto(s)
Arsénico , Agua Subterránea , Selenio , Contaminantes Químicos del Agua , Selenio/análisis , Contaminantes Químicos del Agua/análisis , Agua , Agua Subterránea/análisis , Monitoreo del Ambiente
2.
Sci Total Environ ; 904: 166937, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696399

RESUMEN

In the southern San Joaquin Valley (SJV) of California, an agriculturally productive region that relies on groundwater for irrigation and domestic water supply, the infiltration of produced water from oil reservoirs is known to impact groundwater due to percolation from unlined disposal ponds. However, previously documented impacts almost exclusively focus on salinity, while contaminant loadings commonly associated with produced water (e.g., radionuclides) are poorly constrained. For example, the infiltration of bicarbonate-rich produced waters can react with sediment-bound uranium (U), leading to U mobilization and subsequent transport to nearby groundwater. Specifically, produced water infiltration poses a particular concern for SJV groundwater, as valley-fill sediments are well documented to be enriched in geogenic, reduced U. Here, we analyzed monitoring well data from two SJV produced water pond facilities to characterize U mobilization and subsequent groundwater contamination. Groundwater wells installed within 2 km of the facilities contained produced water and elevated levels of uranium. There are >400 produced water disposal pond facilities in the southern SJV. If our observations occur at even a fraction of these facilities, there is the potential for widespread U contamination in the groundwaters of one of the most productive agricultural regions in the world.

3.
Sci Total Environ ; 820: 153247, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35063530

RESUMEN

Contaminated legacy sediments contribute to modern pollution loadings, particularly trace metals. These contributions are challenging to quantify as metal histories reconstructed from sediment records cannot be easily divided into legacy and concurrent contamination. In particular, the contribution from re-mobilization and delivery of legacy metals stored in catchment soil, colluvial, and fluvial environments are rarely considered or quantified when interpreting sediment records. Here, extended records of metals accumulation for a set of three lakes in Yunnan, China are compared with endmember chemistries using Monte Carlo-Markov Chain mixing models to help identify source contributions to the sediments. This approach allows attribution of metals transported by atmospheric and fluvial mechanisms in a region with a history of mining and metallurgy spanning millennia. These analyses reveal distinct source mixtures and demonstrate the sensitivity of lake records to basin sediment dynamics. In particular, substantial proportions of elevated metal concentrations in these lake systems seem to arise from soil contributions more than from atmospheric deposition of smelting emissions. The largest soil contributions seem to be in Erhai, a lake with erosion prone soils closely "connected" to the lake. Moreover, these invesigations illustrate the potential for mixing approaches to accommodate and clarify uncertainties in metal source and extraction as differences in extraction efficiency can be incorporated into source uncertainty estimates. Ultimately, these approaches emphasize the need to account for fluvial metal transport in interpretation of sediment histories.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA